Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3974, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730230

ABSTRACT

Antibodies are engineerable quantities in medicine. Learning antibody molecular recognition would enable the in silico design of high affinity binders against nearly any proteinaceous surface. Yet, publicly available experiment antibody sequence-binding datasets may not contain the mutagenic, antigenic, or antibody sequence diversity necessary for deep learning approaches to capture molecular recognition. In part, this is because limited experimental platforms exist for assessing quantitative and simultaneous sequence-function relationships for multiple antibodies. Here we present MAGMA-seq, an integrated technology that combines multiple antigens and multiple antibodies and determines quantitative biophysical parameters using deep sequencing. We demonstrate MAGMA-seq on two pooled libraries comprising mutants of nine different human antibodies spanning light chain gene usage, CDR H3 length, and antigenic targets. We demonstrate the comprehensive mapping of potential antibody development pathways, sequence-binding relationships for multiple antibodies simultaneously, and identification of paratope sequence determinants for binding recognition for broadly neutralizing antibodies (bnAbs). MAGMA-seq enables rapid and scalable antibody engineering of multiple lead candidates because it can measure binding for mutants of many given parental antibodies in a single experiment.


Subject(s)
High-Throughput Nucleotide Sequencing , Immunoglobulin Fab Fragments , Mutation , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , High-Throughput Nucleotide Sequencing/methods , Protein Engineering/methods , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Complementarity Determining Regions/genetics , Complementarity Determining Regions/chemistry , Antibody Affinity , Antigens/immunology , Antigens/genetics
2.
J Mol Biol ; 436(11): 168586, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663544

ABSTRACT

Stabilizing proteins without otherwise hampering their function is a central task in protein engineering and design. PYR1 is a plant hormone receptor that has been engineered to bind diverse small molecule ligands. We sought a set of generalized mutations that would provide stability without affecting functionality for PYR1 variants with diverse ligand-binding capabilities. To do this we used a global multi-mutant analysis (GMMA) approach, which can identify substitutions that have stabilizing effects and do not lower function. GMMA has the added benefit of finding substitutions that are stabilizing in different sequence contexts and we hypothesized that applying GMMA to PYR1 with different functionalities would identify this set of generalized mutations. Indeed, conducting FACS and deep sequencing of libraries for PYR1 variants with two different functionalities and applying a GMMA analysis identified 5 substitutions that, when inserted into four PYR1 variants that each bind a unique ligand, provided an increase of 2-6 °C in thermal inactivation temperature and no decrease in functionality.


Subject(s)
DNA Mutational Analysis , Plant Growth Regulators , Plant Proteins , Protein Engineering , Protein Stability , Receptors, Cell Surface , Amino Acid Substitution/genetics , Ligands , Mutation , Protein Binding , Protein Engineering/methods , DNA Mutational Analysis/methods , Kluyveromyces , Plant Growth Regulators/chemistry , Plant Proteins/chemistry , Plant Proteins/genetics , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Abscisic Acid/metabolism
3.
bioRxiv ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38293170

ABSTRACT

Antibodies are engineerable quantities in medicine. Learning antibody molecular recognition would enable the in silico design of high affinity binders against nearly any proteinaceous surface. Yet, publicly available experiment antibody sequence-binding datasets may not contain the mutagenic, antigenic, or antibody sequence diversity necessary for deep learning approaches to capture molecular recognition. In part, this is because limited experimental platforms exist for assessing quantitative and simultaneous sequence-function relationships for multiple antibodies. Here we present MAGMA-seq, an integrated technology that combines multiple antigens and multiple antibodies and determines quantitative biophysical parameters using deep sequencing. We demonstrate MAGMA-seq on two pooled libraries comprising mutants of ten different human antibodies spanning light chain gene usage, CDR H3 length, and antigenic targets. We demonstrate the comprehensive mapping of potential antibody development pathways, sequence-binding relationships for multiple antibodies simultaneously, and identification of paratope sequence determinants for binding recognition for broadly neutralizing antibodies (bnAbs). MAGMA-seq enables rapid and scalable antibody engineering of multiple lead candidates because it can measure binding for mutants of many given parental antibodies in a single experiment.

4.
Trends Biochem Sci ; 49(3): 185-188, 2024 03.
Article in English | MEDLINE | ID: mdl-37884411

ABSTRACT

Post-transcriptional modifications of RNA (PRMs) and post-translational modifications of proteins (PTMs) are important regulatory mechanisms in biological processes and have many commonalities. However, the integration of these research areas is lacking. A recent discussion identified the priorities, areas of emphasis, and necessary technologies to advance and integrate these areas of study.


Subject(s)
Protein Processing, Post-Translational , Proteins , RNA
5.
Biotechnol Bioeng ; 121(1): 281-290, 2024 01.
Article in English | MEDLINE | ID: mdl-37750676

ABSTRACT

Protocols for the construction of large, deeply mutagenized protein encoding libraries via Golden Gate assembly of synthetic DNA cassettes employ disparate, system-specific methodology. Here we present a standardized Golden Gate method for building user-defined libraries. We demonstrate that a 25 µL reaction, using 40 fmol of input DNA, can generate a library on the order of 1 × 106 members and that reaction volume or input DNA concentration can be scaled up with no losses in transformation efficiency. Such libraries can be constructed from dsDNA cassettes generated either by degenerate oligonucleotides or oligo pools. We demonstrate its real-world effectiveness by building custom, user-defined libraries on the order of 104 -107 unique protein encoding variants for two orthogonal protein engineering systems. We include a detailed protocol and provide several general-use destination vectors.


Subject(s)
DNA , Synthetic Biology , Synthetic Biology/methods , DNA/metabolism , Protein Engineering , Gene Library , Mutagenesis , Genetic Vectors , Cloning, Molecular
6.
Biotechnol Bioeng ; 120(10): 3057-3066, 2023 10.
Article in English | MEDLINE | ID: mdl-37366288

ABSTRACT

Construction of user-defined long circular single stranded DNA (cssDNA) and linear single stranded DNA (lssDNA) is important for various biotechnological applications. Many current methods for synthesis of these ssDNA molecules do not scale to multikilobase constructs. Here we present a robust methodology for generating user-defined cssDNA employing Golden Gate assembly, a nickase, and exonuclease degradation. Our technique is demonstrated for three plasmids with insert sizes ranging from 2.1 to 3.4 kb, requires no specialized equipment, and can be accomplished in 5 h with a yield of 33%-43% of the theoretical. To produce lssDNA, we evaluated different CRISPR-Cas9 cleavage conditions and reported a 52 ± 8% cleavage efficiency of cssDNA. Thus, our current method does not compete with existing protocols for lssDNA generation. Nevertheless, our protocol can make long, user-defined cssDNA readily available to biotechnology researchers.


Subject(s)
DNA, Single-Stranded , DNA , DNA, Single-Stranded/genetics , Plasmids/genetics , DNA/genetics , Biotechnology
7.
Nat Biotechnol ; 40(12): 1855-1861, 2022 12.
Article in English | MEDLINE | ID: mdl-35726092

ABSTRACT

A general method to generate biosensors for user-defined molecules could provide detection tools for a wide range of biological applications. Here, we describe an approach for the rapid engineering of biosensors using PYR1 (Pyrabactin Resistance 1), a plant abscisic acid (ABA) receptor with a malleable ligand-binding pocket and a requirement for ligand-induced heterodimerization, which facilitates the construction of sense-response functions. We applied this platform to evolve 21 sensors with nanomolar to micromolar sensitivities for a range of small molecules, including structurally diverse natural and synthetic cannabinoids and several organophosphates. X-ray crystallography analysis revealed the mechanistic basis for new ligand recognition by an evolved cannabinoid receptor. We demonstrate that PYR1-derived receptors are readily ported to various ligand-responsive outputs, including enzyme-linked immunosorbent assay (ELISA)-like assays, luminescence by protein-fragment complementation and transcriptional circuits, all with picomolar to nanomolar sensitivity. PYR1 provides a scaffold for rapidly evolving new biosensors for diverse sense-response applications.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Biosensing Techniques , Plant Growth Regulators , Arabidopsis Proteins/genetics , Ligands , Plants
8.
Protein Eng Des Sel ; 342021 02 15.
Article in English | MEDLINE | ID: mdl-34341824

ABSTRACT

Generating combinatorial libraries of specific sets of mutations are essential for addressing protein engineering questions involving contingency in molecular evolution, epistatic relationships between mutations, as well as functional antibody and enzyme engineering. Here we present optimization of a combinatorial mutagenesis method involving template-based nicking mutagenesis, which allows for the generation of libraries with >99% coverage for tens of thousands of user-defined variants. The non-optimized method resulted in low library coverage, which could be rationalized by a model of oligonucleotide annealing bias resulting from the nucleotide mismatch free-energy difference between mutagenic oligo and template. The optimized method mitigated this thermodynamic bias using longer primer sets and faster annealing conditions. Our updated method, applied to two antibody fragments, delivered between 99.0% (32451/32768 library members) to >99.9% coverage (32757/32768) for our desired libraries in 2 days and at an approximate 140-fold sequencing depth of coverage.


Subject(s)
Protein Engineering , Gene Library , Mutagenesis , Mutation
9.
Science ; 373(6553): 391-392, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34437105

Subject(s)
Personality
10.
Bio Protoc ; 10(15): e3697, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-33659364

ABSTRACT

Saturation mutagenesis is a fundamental enabling technology for protein engineering and epitope mapping. Nicking mutagenesis (NM) allows the user to rapidly construct libraries of all possible single mutations in a target protein sequence from plasmid DNA in a one-pot procedure. Briefly, one strand of the plasmid DNA is degraded using a nicking restriction endonuclease and exonuclease treatment. Mutagenic primers encoding the desired mutations are annealed to the resulting circular single-stranded DNA, extended with high-fidelity polymerase, and ligated into covalently closed circular DNA by Taq DNA ligase. The heteroduplex DNA is resolved by selective degradation of the template strand. The complementary strand is synthesized and ligated, resulting in a library of mutated covalently closed circular plasmids. It was later shown that because very little primer is used in the procedure, resuspended oligo pools, which normally require amplification before use, can be used directly in the mutagenesis procedure. Because oligo pools can contain tens of thousands of unique oligos, this enables the construction of libraries of tens of thousands of user-defined mutations in a single-pot mutagenesis reaction, which significantly improves the utility of NM as described below. Use of oligo pools afford an economically advantageous approach to mutagenic experiments. First, oligo pool synthesis is much less expensive per nucleotide synthesized than conventional synthesis. Second, a mixed pool may be generated and used for mutagenesis of multiple different genes. To use the same oligo-pool for mutagenesis of a variety of genes, the user must only quantify the fraction of the oligo-pool specific to her mutagenic experiment and adjust the volume and effective concentration of the oligo-pool for use in nicking mutagenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...