Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 117(11): 5749-5760, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32132201

ABSTRACT

Dysregulated cholesterol metabolism is implicated in a number of neurological disorders. Many sterols, including cholesterol and its precursors and metabolites, are biologically active and important for proper brain function. However, spatial cholesterol metabolism in brain and the resulting sterol distributions are poorly defined. To better understand cholesterol metabolism in situ across the complex functional regions of brain, we have developed on-tissue enzyme-assisted derivatization in combination with microliquid extraction for surface analysis and liquid chromatography-mass spectrometry to locate sterols in tissue slices (10 µm) of mouse brain. The method provides sterolomic analysis at 400-µm spot diameter with a limit of quantification of 0.01 ng/mm2 It overcomes the limitations of previous mass spectrometry imaging techniques in analysis of low-abundance and difficult-to-ionize sterol molecules, allowing isomer differentiation and structure identification. Here we demonstrate the spatial distribution and quantification of multiple sterols involved in cholesterol metabolic pathways in wild-type and cholesterol 24S-hydroxylase knockout mouse brain. The technology described provides a powerful tool for future studies of spatial cholesterol metabolism in healthy and diseased tissues.


Subject(s)
Brain/metabolism , Cholesterol/analogs & derivatives , Hydroxycholesterols/metabolism , Mass Spectrometry/methods , Animals , Brain Chemistry , Cholesterol/analysis , Cholesterol/metabolism , Hydroxycholesterols/analysis , Limit of Detection , Male , Mass Spectrometry/standards , Mice , Mice, Inbred C57BL
2.
Rapid Commun Mass Spectrom ; 33(15): 1267-1276, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31009547

ABSTRACT

RATIONALE: We describe a novel method for preparing milk samples and profiling their triglyceride (TG) fractions. This method was used to explore how the TG profile of milk modulates as lactation progresses and how the TG profile differs between breasts. METHODS: Fresh milk was spotted onto Whatman filter paper and air-dried. Liquid Extraction Surface Analysis coupled to Fourier Transform Mass Spectrometry (LESA-MS) was adapted for molecular profiling. Collision-Induced Dissociation (CID) was used to profile fatty acid residues. RESULTS: LESA-MS produced the relative abundances of all isobaric TGs described and showed that mammary glands within one individual can produce a different profile of TGs. CID was used to uncover the configuration of isobaric triglycerides, indicating the relative amounts of the fatty acids contributing to that triglyceride's mass. This also indicated the presence of very long chain fatty acids (C26:0 and C26:1) that have not been reported before in human breast milk. CONCLUSIONS: We conclude that spotting on paper and the use of LESA-MS and CID on milk spots is not only a means for analysing milk in unprecedented detail for this preparation time, but is also amenable to conditions in which collecting and storing fresh milk samples for detailed profiling is prohibitively difficult.


Subject(s)
Fatty Acids/chemistry , Liquid-Liquid Extraction/methods , Mass Spectrometry/methods , Milk, Human/chemistry , Triglycerides/chemistry , Female , Fourier Analysis , Humans , Mass Spectrometry/instrumentation
3.
Anal Chem ; 89(20): 11143-11150, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28945354

ABSTRACT

Direct analysis by mass spectrometry (imaging) has become increasingly deployed in preclinical and clinical research due to its rapid and accurate readouts. However, when it comes to biomarker discovery or histopathological diagnostics, more sensitive and in-depth profiling from localized areas is required. We developed a comprehensive, fully automated online platform for high-resolution liquid extraction surface analysis (HR-LESA) followed by micro-liquid chromatography (LC) separation and a data-independent acquisition strategy for untargeted and low abundant analyte identification directly from tissue sections. Applied to tissue sections of rat pituitary, the platform demonstrated improved spatial resolution, allowing sample areas as small as 400 µm to be studied, a major advantage over conventional LESA. The platform integrates an online buffer exchange and washing step for removal of salts and other endogenous contamination that originates from local tissue extraction. Our carry over-free platform showed high reproducibility, with an interextraction variability below 30%. Another strength of the platform is the additional selectivity provided by a postsampling gas-phase ion mobility separation. This allowed distinguishing coeluted isobaric compounds without requiring additional separation time. Furthermore, we identified untargeted and low-abundance analytes, including neuropeptides deriving from the pro-opiomelanocortin precursor protein and localized a specific area of the pituitary gland (i.e., adenohypophysis) known to secrete neuropeptides and other small metabolites related to development, growth, and metabolism. This platform can thus be applied for the in-depth study of small samples of complex tissues with histologic features of ∼400 µm or more, including potential neuropeptide markers involved in many diseases such as neurodegenerative diseases, obesity, bulimia, and anorexia nervosa.

4.
Anal Methods ; 2016(16): 3373-3382, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27990179

ABSTRACT

Liquid Extraction Surface Analysis (LESA) is a new, high throughput tool for ambient mass spectrometry. A solvent droplet is deposited from a pipette tip onto a surface and maintains contact with both the surface and the pipette tip for a few seconds before being re-aspirated. The technique is particularly suited to the analysis of trace materials on surfaces due to its high sensitivity and low volume of sample removal. In this work, we assess the suitability of LESA for obtaining detailed chemical profiles of fingerprints, oral fluid and urine, which may be used in future for rapid medical diagnostics or metabolomics studies. We further show how LESA can be used to detect illicit drugs and their metabolites in urine, oral fluid and fingerprints. This makes LESA a potentially useful tool in the growing field of fingerprint chemical analysis, which is relevant not only to forensics but also to medical diagnostics. Finally, we show how LESA can be used to detect the explosive material RDX in contaminated artificial fingermarks.

5.
Rapid Commun Mass Spectrom ; 28(13): 1561-8, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24861608

ABSTRACT

RATIONALE: Non-covalent mass spectrometry (MS) offers considerable potential for protein-ligand screening in drug discovery programmes. However, there are some limitations with the time-of-flight (TOF) instrumentation typically employed that restrict the application of non-covalent MS in industrial laboratories. METHODS: An Exactive Plus EMR mass spectrometer was investigated for its ability to characterise non-covalent protein-small molecule interactions. Nano-electrospray ionisation (nanoESI) infusion was achieved with a TriVersa NanoMate. The transport multipole and ion lens voltages, dissociation energies and pressure in the Orbitrap™ were optimised. Native MS was performed, with ligand titrations to judge retention of protein-ligand interactions, serial dilutions of native proteins as an indication of sensitivity, and a heterogeneous protein analysed for spectral resolution. RESULTS: Interactions between native proteins and ligands are preserved during analysis on the Exactive Plus EMR, with the binding affinities determined in good agreement with expected values. High spectral resolution allows baseline separation of adduct ions, which should improve the accuracy and limit of detection for measuring ligand interactions. Data are also presented showing baseline resolution of glycoforms of a highly glycosylated protein, allowing binding of a fragment molecule to be detected. CONCLUSIONS: The high sensitivity and spectral resolution achievable with the Orbitrap technology confer significant advantages over TOF mass spectrometers, and offer a solution to current limitations regarding throughput, data analysis and sample requirements. A further benefit of improved spectral resolution is the possibility of using heterogeneous protein samples such as glycoproteins for fragment screening. This would significantly expand the scope of applicability of non-covalent MS in the pharmaceutical and other industries.


Subject(s)
Drug Discovery/methods , Mass Spectrometry/methods , Proteins/chemistry , Proteins/metabolism , Ligands , Protein Binding , Proteins/analysis
6.
Rapid Commun Mass Spectrom ; 28(9): 995-1003, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24677520

ABSTRACT

RATIONALE: The signal intensity of a given molecule across a tissue section when measured using mass spectrometry imaging (MSI) is prone to changes caused by the molecular heterogeneity across the surface of the tissue. Here we propose a strategy to investigate these effects using electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) on a single high-resolution mass spectrometry (HRMS) platform. METHODS: A rat was administered with a single inhaled dose of a compound and sacrificed 1 h after dosing. Sections were prepared from the excised frozen lung and analysed using MALDI, liquid extraction surface analysis (LESA) nano-ESI-MS and nano-ESI liquid chromatography (LC)/MS. The ESI and MALDI ion sources were mounted either side of the ion transfer system of the same Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. RESULTS: MALDI MSI clearly demonstrated widespread distribution of the dosed molecule throughout the lung, with the exception of a non-lung section of tissue on the same sample surface. Comparison of the lipid signals across the sample indicated a change in signal between the lung and the adipose tissue present on the same section. Use of ESI and MALDI, with and without an internal standard, supported the evaluation of changes in the signal of the dosed molecule across the tissue section. CONCLUSIONS: The results demonstrate the successful application of a dual ion source HRMS system to the systematic evaluation of data from MALDI MSI, used to determine the distribution of an inhaled drug in the lung. The system discussed is of great utility in investigating the effects of ion suppression and evaluating the quantitative and qualitative nature of the MSI data.


Subject(s)
Histocytochemistry/methods , Mass Spectrometry/methods , Molecular Imaging/methods , Animals , Chromatography, Liquid , Lipids/analysis , Lipids/chemistry , Lung/chemistry , Nanotechnology , Rats , Tissue Distribution
7.
J Mass Spectrom ; 47(1): 96-104, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22282095

ABSTRACT

Top-down shotgun lipidomics relies on direct infusion of total lipid extracts into a high-resolution tandem mass spectrometer and implies that individual lipids are recognized by their accurately determined m/z. Lipid ionization efficiency and detection specificity strongly depend on the acquisition polarity, and therefore it is beneficial to analyze lipid mixtures in both positive and negative modes. Hybrid LTQ Orbitrap mass spectrometers are widely applied in top-down lipidomics; however, rapid polarity switching was previously unfeasible because of the severe and immediate degradation of mass accuracy. Here, we report on a method to rapidly acquire high-resolution spectra in both polarity modes with sub-ppm mass accuracy and demonstrate that it not only simplifies and accelerates shotgun lipidomics analyses but also improves the lipidome coverage because more lipid classes and more individual species within each class are recognized. In this way, shotgun analysis of total lipid extracts of human blood plasma enabled to quantify 222 species from 15 major lipid classes within 7 min acquisition cycle.


Subject(s)
Lipids/analysis , Mass Spectrometry/methods , Animals , Cattle , Fourier Analysis , Humans , Lipids/blood , Mass Spectrometry/instrumentation , Metabolomics , Myocardium/chemistry
8.
Circ Cardiovasc Genet ; 4(3): 232-42, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21511877

ABSTRACT

BACKGROUND: We sought to perform a systematic lipid analysis of atherosclerotic plaques using emerging mass spectrometry techniques. METHODS AND RESULTS: A chip-based robotic nanoelectrospray platform interfaced to a triple quadrupole mass spectrometer was adapted to analyze lipids in tissue sections and extracts from human endarterectomy specimens by shotgun lipidomics. Eighteen scans for different lipid classes plus additional scans for fatty acids resulted in the detection of 150 lipid species from 9 different classes of which 24 were detected in endarterectomies only. Further analyses focused on plaques from symptomatic and asymptomatic patients and stable versus unstable regions within the same lesion. Polyunsaturated cholesteryl esters with long-chain fatty acids and certain sphingomyelin species showed the greatest relative enrichment in plaques compared to plasma and formed part of a lipid signature for vulnerable and stable plaque areas in a systems-wide network analysis. In principal component analyses, the combination of lipid species across different classes provided a better separation of stable and unstable areas than individual lipid classes. CONCLUSIONS: This comprehensive analysis of plaque lipids demonstrates the potential of lipidomics for unraveling the lipid heterogeneity within atherosclerotic lesions.


Subject(s)
Atherosclerosis/pathology , Lipids/analysis , Mass Spectrometry/methods , Plaque, Atherosclerotic/chemistry , Atherosclerosis/surgery , Endarterectomy, Carotid , Humans , Lipid Metabolism , Mass Spectrometry/instrumentation , Principal Component Analysis , Radial Artery/pathology , Software
9.
Anal Chem ; 83(6): 2265-70, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21341716

ABSTRACT

Hemoglobinopathies are the most common inherited disorders. Newborn blood screening for clinically significant hemoglobin variants, including sickle (HbS), HbC, and HbD, has been adopted in many countries as it is widely acknowledged that early detection improves the outcome. We present a method for determination of Hb variants by direct surface sampling of dried blood spots by use of an Advion Triversa Nanomate automated electrospray system coupled to a high-resolution mass spectrometer. The method involves no sample preparation. It is possible to unambiguously identify homozygous and heterozygous HbS, HbC, and HbD variants in <10 min without the need for additional confirmation. The method allows for repeated analysis of a single blood spot over a prolonged time period and is tolerant of blood spot storage conditions.


Subject(s)
Blood Chemical Analysis/methods , Blood Specimen Collection/methods , Hemoglobins, Abnormal/analysis , Mass Spectrometry/methods , Adult , Hemoglobins, Abnormal/isolation & purification , Humans , Infant, Newborn , Time Factors
10.
Anal Chem ; 82(18): 7787-94, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20715787

ABSTRACT

Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) and liquid extraction surface analysis (LESA) with nanoelectrospray ionization mass spectrometry (nESI-MS) have both been successfully employed to determine the degree of percutaneous absorption of three novel nonsteroid glucocorticoid receptor (GR) agonists in porcine ear sections. Historically, the ability of a glucocorticoid to elicit a skin blanching response when applied at low dose in ethanol solution to the forearms of healthy human volunteers has been a reliable predictor of their topical anti-inflammatory activity. While all three nonsteroidal GR agonists under investigation caused a skin blanching effect, the responses did not correlate with in vitro GR agonist potencies and different time courses were also observed for the skin blanching responses. MALDI MSI and LESA with nESI-MS were used to investigate and understand these different responses. The findings of the investigation was that the depth of porcine skin penetration correlates to the degree of skin blanching obtained for the same three compounds in human volunteers.


Subject(s)
Chemical Fractionation , Nanotechnology , Receptors, Glucocorticoid/agonists , Skin Absorption , Skin/drug effects , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Adolescent , Adult , Animals , Atmospheric Pressure , Ear , Glucocorticoids/metabolism , Glucocorticoids/pharmacology , Humans , Male , Middle Aged , Surface Properties , Young Adult
11.
Mol Cell Proteomics ; 9(9): 2048-62, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20551380

ABSTRACT

The vascular extracellular matrix (ECM) is essential for the structural integrity of the vessel wall and also serves as a substrate for the binding and retention of secreted products of vascular cells as well as molecules coming from the circulation. Although proteomics has been previously applied to vascular tissues, few studies have specifically targeted the vascular ECM and its associated proteins. Thus, its detailed composition remains to be characterized. In this study, we describe a methodology for the extraction of extracellular proteins from human aortas and their identification by proteomics. The approach is based on (a) effective decellularization to enrich for scarce extracellular proteins, (b) successful solubilization and deglycosylation of ECM proteins, and (c) relative estimation of protein abundance using spectral counting. Our three-step extraction approach resulted in the identification of 103 extracellular proteins of which one-third have never been reported in the proteomics literature of vascular tissues. In particular, three glycoproteins (podocan, sclerostin, and agrin) were identified for the first time in human aortas at the protein level. We also identified extracellular adipocyte enhancer-binding protein 1, the cartilage glycoprotein asporin, and a previously hypothetical protein, retinal pigment epithelium (RPE) spondin. Moreover, our methodology allowed us to screen for proteolysis in the aortic samples based on the identification of proteolytic enzymes and their corresponding degradation products. For instance, we were able to detect matrix metalloproteinase-9 by mass spectrometry and relate its presence to degradation of fibronectin in a clinical specimen. We expect this proteomics methodology to further our understanding of the composition of the vascular extracellular environment, shed light on ECM remodeling and degradation, and provide insights into important pathological processes, such as plaque rupture, aneurysm formation, and restenosis.


Subject(s)
Aorta/metabolism , Extracellular Matrix Proteins/metabolism , Extracellular Space/metabolism , Proteomics , Electrophoresis, Polyacrylamide Gel , Glycosylation , Humans , Tandem Mass Spectrometry
12.
Rapid Commun Mass Spectrom ; 18(17): 1995-2000, 2004.
Article in English | MEDLINE | ID: mdl-15329867

ABSTRACT

An assay method with mass spectrometric detection was developed for the quantitative analysis of a pharmaceutical compound and its major metabolite in human plasma using chip-based infusion. Liquid-liquid extraction sample preparation was found to be essential to minimize matrix suppression and to achieve a limit of quantitation (LOQ) of 2.5 ng/mL using a 100 microL plasma aliquot. The potential for simultaneous quantitation in selected reaction monitoring (SRM), tandem mass spectrometry (MS/MS) (enhanced product ion), and MS(3) was investigated and found to be very beneficial in improving assay selectivity. A novel concept for monitoring quantitative assay performance using a SRM/MS(3) ratio is proposed.


Subject(s)
Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Nanotechnology/methods , Pharmaceutical Preparations/blood , Reproducibility of Results , Sensitivity and Specificity
13.
Anal Chem ; 75(18): 4937-41, 2003 Sep 15.
Article in English | MEDLINE | ID: mdl-14674475

ABSTRACT

Nanoflow electrospray mass spectrometry has been applied previously to investigate noncovalent protein-protein and protein-ligand interactions. Here we evaluate a commercial microchip device for this application. We show that the microchip can be used to obtain mass spectra of the noncovalent tetramer transthyretin. The device showed a 10-fold increase in signal stability compared with a nanoflow capillary and a high level of nozzle-to-nozzle reproducibility. Binding of the natural ligand thyroxine was clearly observed, and a range of small molecules proposed as inhibitors of transthyretin amyloidosis were shown to be effective in stabilizing the tetramer. We propose that measuring the ability of small molecules to stabilize protein complexes using this automated microchip technology will enable high-throughput screening of multi-protein complexes by mass spectrometry.


Subject(s)
Mass Spectrometry/instrumentation , Proteins/metabolism , Semiconductors , Ligands , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...