Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(15): e2309217, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38245856

ABSTRACT

Oxide electronics provide the key concepts and materials for enhancing silicon-based semiconductor technologies with novel functionalities. However, a basic but key property of semiconductor devices still needs to be unveiled in its oxidic counterparts: the ability to set or even switch between two types of carriers-either negatively (n) charged electrons or positively (p) charged holes. Here, direct evidence for individually emerging n- or p-type 2D band dispersions in STO-based heterostructures is provided using resonant photoelectron spectroscopy. The key to tuning the carrier character is the oxidation state of an adjacent Fe-based interface layer: For Fe and FeO, hole bands emerge in the empty bandgap region of STO due to hybridization of Ti- and Fe- derived states across the interface, while for Fe3O4 overlayers, an 2D electron system is formed. Unexpected oxygen vacancy characteristics arise for the hole-type interfaces, which as of yet had been exclusively assigned to the emergence of 2DESs. In general, this finding opens up the possibility to straightforwardly switch the type of conductivity at STO interfaces by the oxidation state of a redox overlayer. This will extend the spectrum of phenomena in oxide electronics, including the realization of combined n/p-type all-oxide transistors or logic gates.

SELECTION OF CITATIONS
SEARCH DETAIL
...