Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 19(4): 1059-1069, 2020 04.
Article in English | MEDLINE | ID: mdl-32054790

ABSTRACT

Androgen deprivation therapy and second-generation androgen receptor signaling inhibitors such as enzalutamide are standard treatments for advanced/metastatic prostate cancer. Unfortunately, most men develop resistance and relapse; signaling via insulin-like growth factor (IGF) has been implicated in castration-resistant prostate cancer. We evaluated the antitumor activity of xentuzumab (IGF ligand-neutralizing antibody), alone and in combination with enzalutamide, in prostate cancer cell lines (VCaP, DuCaP, MDA PCa 2b, LNCaP, and PC-3) using established in vitro assays, and in vivo, using LuCaP 96CR, a prostate cancer patient-derived xenograft (PDX) model. Xentuzumab + enzalutamide reduced the viability of phosphatase and tensin homolog (PTEN)-expressing VCaP, DuCaP, and MDA PCa 2b cells more than either single agent, and increased antiproliferative activity and apoptosis induction in VCaP. Xentuzumab or xentuzumab + enzalutamide inhibited IGF type 1 receptor and AKT serine/threonine kinase (AKT) phosphorylation in VCaP, DuCaP, and MDA PCa 2b cells; xentuzumab had no effect on AKT phosphorylation and proliferation in PTEN-null LNCaP or PC-3 cells. Knockdown of PTEN led to loss of antiproliferative activity of xentuzumab and reduced activity of xentuzumab + enzalutamide in VCaP cells. Xentuzumab + enzalutamide inhibited the growth of castration-resistant LuCaP 96CR PDX with acquired resistance to enzalutamide, and improved survival in vivo The data suggest that xentuzumab + enzalutamide combination therapy may overcome castration resistance and could be effective in patients who are resistant to enzalutamide alone. PTEN status as a biomarker of responsiveness to combination therapy needs further investigation.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/pharmacology , Insulin-Like Growth Factor II/antagonists & inhibitors , Insulin-Like Growth Factor I/antagonists & inhibitors , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms, Castration-Resistant/drug therapy , Animals , Apoptosis , Benzamides , Cell Cycle , Cell Proliferation , Drug Therapy, Combination , Humans , Male , Mice , Mice, SCID , Nitriles , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
Mol Cancer Ther ; 15(10): 2388-2398, 2016 10.
Article in English | MEDLINE | ID: mdl-27496137

ABSTRACT

Although the MAPK pathway is frequently deregulated in cancer, inhibitors targeting RAF or MEK have so far shown clinical activity only in BRAF- and NRAS-mutant melanoma. Improvements in efficacy may be possible by combining inhibition of mitogenic signal transduction with inhibition of cell-cycle progression. We have studied the preclinical pharmacology of BI 847325, an ATP-competitive dual inhibitor of MEK and Aurora kinases. Potent inhibition of MEK1/2 and Aurora A/B kinases by BI 847325 was demonstrated in enzymatic and cellular assays. Equipotent effects were observed in BRAF-mutant cells, whereas in KRAS-mutant cells, MEK inhibition required higher concentrations than Aurora kinase inhibition. Daily oral administration of BI 847325 at 10 mg/kg showed efficacy in both BRAF- and KRAS-mutant xenograft models. Biomarker analysis suggested that this effect was primarily due to inhibition of MEK in BRAF-mutant models but of Aurora kinase in KRAS-mutant models. Inhibition of both MEK and Aurora kinase in KRAS-mutant tumors was observed when BI 847325 was administered once weekly at 70 mg/kg. Our studies indicate that BI 847325 is effective in in vitro and in vivo models of cancers with BRAF and KRAS mutation. These preclinical data are discussed in the light of the results of a recently completed clinical phase I trial assessing safety, tolerability, pharmacokinetics, and efficacy of BI 847325 in patients with cancer. Mol Cancer Ther; 15(10); 2388-98. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Adenosine Triphosphate/metabolism , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Aurora Kinases/chemistry , Aurora Kinases/metabolism , Binding, Competitive , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Female , Humans , Mice , Mitogen-Activated Protein Kinase Kinases/chemistry , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Molecular , Molecular Conformation , Protein Binding , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...