Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
2.
Front Immunol ; 13: 849329, 2022.
Article in English | MEDLINE | ID: mdl-35592315

ABSTRACT

Recently, mass cytometry has enabled quantification of up to 50 parameters for millions of cells per sample. It remains a challenge to analyze such high-dimensional data to exploit the richness of the inherent information, even though many valuable new analysis tools have already been developed. We propose a novel algorithm "pattern recognition of immune cells (PRI)" to tackle these high-dimensional protein combinations in the data. PRI is a tool for the analysis and visualization of cytometry data based on a three or more-parametric binning approach, feature engineering of bin properties of multivariate cell data, and a pseudo-multiparametric visualization. Using a publicly available mass cytometry dataset, we proved that reproducible feature engineering and intuitive understanding of the generated bin plots are helpful hallmarks for re-analysis with PRI. In the CD4+T cell population analyzed, PRI revealed two bin-plot patterns (CD90/CD44/CD86 and CD90/CD44/CD27) and 20 bin plot features for threshold-independent classification of mice concerning ineffective and effective tumor treatment. In addition, PRI mapped cell subsets regarding co-expression of the proliferation marker Ki67 with two major transcription factors and further delineated a specific Th1 cell subset. All these results demonstrate the added insights that can be obtained using the non-cluster-based tool PRI for re-analyses of high-dimensional cytometric data.


Subject(s)
Neoplasms , Algorithms , Animals , Mice , Neoplasms/therapy , Transcription Factors
3.
Z Rheumatol ; 81(8): 635-641, 2022 Oct.
Article in German | MEDLINE | ID: mdl-35380250

ABSTRACT

Helper T (Th) cells play a decisive role in triggering and maintaining chronic rheumatic inflammation. Via secretion of proinflammatory cytokines and expression of costimulatory cell surface molecules, Th lymphocytes coordinate the recruitment and activation of effector cells, which are ultimately responsible for the immunopathology and tissue destruction. However, therapeutic approaches aimed at eliminating Th cells were unsuccessful due to their lack of selectivity. At the German Rheumatism Research Center (Deutsches Rheuma-Forschungszentrum, DRFZ), we are working to improve the understanding of the Th cells involved in chronic inflammatory reactions. Based on this understanding, our aim is to develop novel treatment strategies that selectively target the pathogenic Th lymphocytes causing rheumatic inflammation. The current article summarizes the DRFZ's research activities on this subject.


Subject(s)
Rheumatic Diseases , T-Lymphocytes , Cytokines , Humans , Inflammation/pathology , T-Lymphocytes/pathology , T-Lymphocytes, Helper-Inducer
4.
Elife ; 92020 05 22.
Article in English | MEDLINE | ID: mdl-32441253

ABSTRACT

Dysregulated cytokine expression by T cells plays a pivotal role in the pathogenesis of autoimmune diseases. However, the identification of the corresponding pathogenic subpopulations is a challenge, since a distinction between physiological variation and a new quality in the expression of protein markers requires combinatorial evaluation. Here, we were able to identify a super-functional follicular helper T cell (Tfh)-like subpopulation in lupus-prone NZBxW mice with our binning approach "pattern recognition of immune cells (PRI)". PRI uncovered a subpopulation of IL-21+ IFN-γhigh PD-1low CD40Lhigh CXCR5- Bcl-6- T cells specifically expanded in diseased mice. In addition, these cells express high levels of TNF-α and IL-2, and provide B cell help for IgG production in an IL-21 and CD40L dependent manner. This super-functional T cell subset might be a superior driver of autoimmune processes due to a polyfunctional and high cytokine expression combined with Tfh-like properties.


Subject(s)
Lupus Erythematosus, Systemic/immunology , Pattern Recognition, Automated/methods , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Antigens, Differentiation/metabolism , Autoimmunity , B-Lymphocytes/immunology , Coculture Techniques , Female , Flow Cytometry/methods , Immunologic Memory , Interleukins/metabolism , Lymphocyte Activation , Mice , Mice, Inbred NZB
5.
J Mol Biol ; 431(19): 3606-3625, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31362003

ABSTRACT

Differentiation toward CD4+ regulatory T (Treg) cells is essentially dependent on an epigenetic program at Treg signature genes, which involves remodeling of the Treg-specific demethylated regions (TSDRs). In particular, the epigenetic status of the conserved non-coding sequence 2 of Foxp3 (Foxp3 TSDR) determines expression stability of the master transcription factor and thus Treg lineage identity. However, the molecular mechanisms controlling the epigenetic remodeling at TSDRs in Treg and conventional T cells are largely unknown. Using a combined approach of DNA pull-down and mass spectrometric analysis, we report a novel regulatory mechanism in which transcription factor Wiz recruits the histone methyltransferase Ehmt1 to Foxp3 TSDR. We show that both Wiz and Ehmt1 are crucial for shaping the region with the repressive histone modification H3K9me2 in conventional T cells. Consistently, knocking out either Ehmt1 or Wiz by CRISPR/Cas resulted in the loss of H3K9me2 and enhanced Foxp3 expression during iTreg differentiation. Moreover, the essential role of the Wiz-Ehmt1 interaction as observed at several TSDRs indicates a global function of Ehmt1 in the Treg differentiation program.


Subject(s)
Forkhead Transcription Factors/metabolism , Histone-Lysine N-Methyltransferase/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , Ascorbic Acid/pharmacology , Base Sequence , Cell Differentiation/drug effects , Cell Differentiation/genetics , DNA Methylation/drug effects , DNA Methylation/genetics , Demethylation , Epigenesis, Genetic/drug effects , Histones/metabolism , Kruppel-Like Transcription Factors/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Genetic , Nerve Tissue Proteins/metabolism , T-Lymphocytes, Regulatory/drug effects
6.
Protist ; 169(4): 584-602, 2018 08.
Article in English | MEDLINE | ID: mdl-29960931

ABSTRACT

Calcineurin is involved in development and cell differentiation of the social amoeba Dictyostelium discoideum. However, since knockouts of the calcineurin-encoding genes are not possible in D. discoideum it is assumed that the phosphatase also plays a crucial role during vegetative growth of the amoebae. Therefore, we investigated the role of calcineurin during vegetative growth in D. discoideum. RNAi-silenced calcineurin mutants showed cellular alterations with an abnormal morphology of mitochondria and had increased content of mitochondrial DNA (mtDNA). In contrast, mitochondria showed no substantial functional impairment. Calcineurin-silencing led to altered expression of calcium-regulated genes as well as mitochondrially-encoded genes. Furthermore, genes related to oxidative stress were higher expressed in the mutants, which correlated to an increased resistance towards reactive oxygen species (ROS). Most of the changes observed during vegetative growth were not seen after starvation of the calcineurin mutants. We show that impairment of calcineurin led to many subtle, but in the sum crucial cellular alterations in vegetative D. discoideum cells. As these alterations were not observed after starvation we propose a dual role for calcineurin during growth and development. Our results imply that calcineurin is one player in the mutual interplay between mitochondria and ROS during vegetative growth.


Subject(s)
Calcineurin/physiology , Dictyostelium/growth & development , Calcineurin/genetics , Dictyostelium/genetics , Gene Expression , Gene Silencing , Mitochondria/physiology , Oxidative Stress , Stress, Physiological
7.
Exp Eye Res ; 166: 56-69, 2018 01.
Article in English | MEDLINE | ID: mdl-29042140

ABSTRACT

Anti-VEGF-directed therapies have been a milestone for treating retinal vascular diseases. Depletion of monocyte lineage cells suppresses pathological neovascularization in the oxygen-induced retinopathy mouse model. However, the question whether myeloid-derived VEGF-A expression is responsible for the pathogenesis in oxygen-induced retinopathy remained unknown. We analyzed LysMCre-driven myeloid cell-specific VEGF-A knockout mice as well as mice with complete depletion of circulating macrophages through clodronate-liposome treatment in the oxygen-induced retinopathy model by immunohistochemistry, qPCR, and flow cytometry. Furthermore, we analyzed VEGF-A mRNA expression in MIO-M1 cells alone and in co-culture with BV-2 cells in vitro. The myeloid cell-specific VEGF-A knockout did not change relative retinal VEGF-A mRNA levels, the relative avascular area or macrophage/granulocyte numbers in oxygen-induced retinopathy and under normoxic conditions. We observed an insignificantly attenuated pathology in systemically clodronate-liposome treated knockouts but evident VEGF-A expression in activated Müller cells on immunohistochemically stained sections. MIO-M1 cells had significantly higher expression levels of VEGF-A in co-culture with BV-2 cells compared to cultivating MIO-M1 cells alone. Our data show that myeloid-derived cells contribute to pathological neovascularization in oxygen-induced retinopathy through activation of VEGF-A expression in Müller cells.


Subject(s)
Ependymoglial Cells/metabolism , Hypoxia/metabolism , Myeloid Cells/metabolism , Retinal Neovascularization/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Humans , Mice , Mice, Knockout , RNA, Messenger/metabolism
8.
Data Brief ; 16: 489-500, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29255783

ABSTRACT

The dataset presented in this article complements the article entitled "Myeloid cells contribute indirectly to VEGF expression upon hypoxia via activation of Müller cells" (C. Nürnberg, N. Kociok, C. Brockmann, T. Lischke, S. Crespo-Garcia, N. Reichhart, S. Wolf, R. Baumgrass, S.A. Eming, S. Beer-Hammer, and A.M. Joussen). This complementary dataset provides further insight into the experimental validation of the VEGFfl/fl LysMCre (here named VEGFmcko) knockout model used in the main article through genomic and quantitative Real-Time PCR in various murine tissues as well as additional flow cytometry data and immunohistochemical stainings. By providing these data, we aim to enable researcher to reproduce and critically analyze our data.

9.
Elife ; 52016 12 30.
Article in English | MEDLINE | ID: mdl-28035902

ABSTRACT

The IL-2/IL-2Ralpha (CD25) axis is of central importance for the interplay of effector and regulatory T cells. Nevertheless, the question how different antigen loads are translated into appropriate IL-2 production to ensure adequate responses against pathogens remains largely unexplored. Here we find that at single cell level, IL-2 is binary (digital) and CD25 is graded expressed whereas at population level both parameters show graded expression correlating with the antigen amount. Combining in vivo data with a mathematical model we demonstrate that only this binary IL-2 expression ensures a wide linear antigen response range for Teff and Treg cells under real spatiotemporal conditions. Furthermore, at low antigen concentrations binary IL-2 expression safeguards by its spatial distribution selective STAT5 activation only of closely adjacent Treg cells regardless of their antigen specificity. These data show that the mode of IL-2 secretion is critical to tailor the adaptive immune response to the antigen amount.


Subject(s)
Adoptive Transfer , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2/genetics , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Gene Expression Regulation , Immunization , Immunophenotyping , Interleukin-2/immunology , Interleukin-2 Receptor alpha Subunit/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Models, Immunological , Ovalbumin/administration & dosage , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/immunology , Signal Transduction , Single-Cell Analysis , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/transplantation , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/transplantation , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/drug effects
10.
J Immunol ; 197(8): 3406-3414, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27591321

ABSTRACT

E- and P-selectin ligands (E- and P-ligs) guide effector memory T cells into skin and inflamed regions, mediate the inflammatory recruitment of leukocytes, and contribute to the localization of hematopoietic precursor cells. A better understanding of their molecular regulation is therefore of significant interest with regard to therapeutic approaches targeting these pathways. In this study, we examined the transcriptional regulation of fucosyltransferase 7 (FUT7), an enzyme crucial for generation of the glycosylated E- and P-ligs. We found that high expression of the coding gene fut7 in murine CD4+ T cells correlates with DNA demethylation within a minimal promoter in skin/inflammation-seeking effector memory T cells. Retinoic acid, a known inducer of the gut-homing phenotype, abrogated the activation-induced demethylation of this region, which contains a cAMP responsive element. Methylation of the promoter or mutation of the cAMP responsive element abolished promoter activity and the binding of CREB, confirming the importance of this region and of its demethylation for fut7 transcription in T cells. Furthermore, studies on human CD4+ effector memory T cells confirmed demethylation within FUT7 corresponding to high FUT7 expression. Monocytes showed an even more extensive demethylation of the FUT7 gene whereas hepatocytes, which lack selectin ligand expression, exhibited extensive methylation. In conclusion, we show that DNA demethylation within the fut7 gene controls selectin ligand expression in mice and humans, including the inducible topographic commitment of T cells for skin and inflamed sites.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , DNA Methylation , Fucosyltransferases/metabolism , Inflammation/metabolism , Skin/metabolism , Animals , Cells, Cultured , DNA Methylation/genetics , Fucosyltransferases/genetics , Humans , Mice , Mice, Inbred BALB C , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
J Biol Chem ; 291(46): 24172-24187, 2016 Nov 11.
Article in English | MEDLINE | ID: mdl-27637333

ABSTRACT

Transcription factors of the nuclear factor of activated T cell (NFAT) family are essential for antigen-specific T cell activation and differentiation. Their cooperative DNA binding with other transcription factors, such as AP1 proteins (FOS, JUN, and JUNB), FOXP3, IRFs, and EGR1, dictates the gene regulatory action of NFATs. To identify as yet unknown interaction partners of NFAT, we purified biotin-tagged NFATc1/αA, NFATc1/ßC, and NFATc2/C protein complexes and analyzed their components by stable isotope labeling by amino acids in cell culture-based mass spectrometry. We revealed more than 170 NFAT-associated proteins, half of which are involved in transcriptional regulation. Among them are many hitherto unknown interaction partners of NFATc1 and NFATc2 in T cells, such as Raptor, CHEK1, CREB1, RUNX1, SATB1, Ikaros, and Helios. The association of NFATc2 with several other transcription factors is DNA-dependent, indicating cooperative DNA binding. Moreover, our computational analysis discovered that binding motifs for RUNX and CREB1 are found preferentially in the direct vicinity of NFAT-binding motifs and in a distinct orientation to them. Furthermore, we provide evidence that mTOR and CHEK1 kinase activity influence NFAT's transcriptional potency. Finally, our dataset of NFAT-associated proteins provides a good basis to further study NFAT's diverse functions and how these are modulated due to the interplay of multiple interaction partners.


Subject(s)
NFATC Transcription Factors/metabolism , Nuclear Proteins/metabolism , T-Lymphocytes/metabolism , Humans , Jurkat Cells , Mass Spectrometry , NFATC Transcription Factors/genetics , Nuclear Proteins/genetics
12.
Eur J Immunol ; 45(11): 3150-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26300430

ABSTRACT

Transcription factors (TFs) regulate cell-type-specific gene expression programs by combinatorial binding to cis-genomic elements, particularly enhancers, subsequently leading to the recruitment of cofactors, and the general transcriptional machinery to target genes. Using data integration of genome-wide TF binding profiles, we defined regions with combinatorial binding of lineage-specific master TFs (T-BET, GATA3, and ROR-γt) and STATs (STAT1 and STAT4, STAT6, and STAT3) in murine T helper (Th) 1, Th2, and Th17 cells, respectively. Stringently excluding promoter regions, we revealed precise genomic elements which were preferentially associated with the enhancer marks p300 and H3K4me1. Furthermore, closely adjacent TF co-occupied regions constituted larger enhancer domains in the respective Th-cell subset (177 in Th1, 141 in Th2, and 266 in Th17 cells) with characteristics of so-called super-enhancers. Importantly, 89% of these super-enhancer regions were Th-cell subtype-specific. Genes associated with super-enhancers, including relevant Th-cell genes (such as Ifng in Th1, Il13 in Th2, and Il17a in Th17 cells), showed strong transcriptional activity. Altogether, the discovered catalog of enhancers provides information about crucial Th-cell subtype-specific regulatory hubs, which will be useful for revealing cell-type-specific gene regulation processes.


Subject(s)
Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Base Sequence , Chromatin Immunoprecipitation , Mice , Molecular Sequence Data , Transcription Factors/immunology
13.
Eur J Immunol ; 45(4): 1192-205, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25486906

ABSTRACT

Repeatedly activated T helper 1 (Th1) cells present during chronic inflammation can efficiently adapt to the inflammatory milieu, for example, by expressing the transcription factor Twist1, which limits the immunopathology caused by Th1 cells. Here, we show that in repeatedly activated murine Th1 cells, Twist1 and T-bet induce expression of microRNA-148a (miR-148a). miR-148a regulates expression of the proapoptotic gene Bim, resulting in a decreased Bim/Bcl2 ratio. Inhibition of miR-148a by antagomirs in repeatedly activated Th1 cells increases the expression of Bim, leading to enhanced apoptosis. Knockdown of Bim expression by siRNA in miR-148a antagomir-treated cells restores viability of the Th1 cells, demonstrating that miR-148a controls survival by regulating Bim expression. Thus, Twist1 and T-bet not only control the differentiation and function of Th1 cells, but also their persistence in chronic inflammation.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Apoptosis/genetics , Gene Expression Regulation , Membrane Proteins/genetics , MicroRNAs/physiology , Nuclear Proteins/metabolism , Proto-Oncogene Proteins/genetics , T-Box Domain Proteins/physiology , Th1 Cells/immunology , Twist-Related Protein 1/metabolism , Animals , Arthritis, Rheumatoid/immunology , Bcl-2-Like Protein 11 , Cell Survival/immunology , Cells, Cultured , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Nuclear Proteins/genetics , RNA Interference , RNA, Small Interfering , T-Box Domain Proteins/genetics , Twist-Related Protein 1/genetics
14.
J Biol Chem ; 289(39): 26752-26761, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25037220

ABSTRACT

Th2 memory lymphocytes have imprinted their Il4 genes epigenetically for expression in dependence of T cell receptor restimulation. However, in a given restimulation, not all Th cells with a memory for IL-4 expression express IL-4. Here, we show that in reactivated Th2 cells, the transcription factors NFATc2, NF-kB p65, c-Maf, p300, Brg1, STAT6, and GATA-3 assemble at the Il4 promoter in Th2 cells expressing IL-4 but not in Th2 cells not expressing it. NFATc2 is critical for assembly of this transcription factor complex. Because NFATc2 translocation into the nucleus occurs in an all-or-none fashion, dependent on complete dephosphorylation by calcineurin, NFATc2 controls the frequencies of cells reexpressing Il4, translates analog differences in T cell receptor stimulation into a digital decision for Il4 reexpression, and instructs all reexpressing cells to express the same amount of IL-4. This analog-to-digital conversion may be critical for the immune system to respond to low concentrations of antigens.


Subject(s)
Cell Nucleus/metabolism , Gene Expression Regulation/physiology , Interleukin-4/biosynthesis , NFATC Transcription Factors/metabolism , Response Elements/physiology , Th2 Cells/metabolism , Active Transport, Cell Nucleus/physiology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Nucleus/genetics , Cell Nucleus/immunology , DNA Helicases/genetics , DNA Helicases/immunology , DNA Helicases/metabolism , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/immunology , E1A-Associated p300 Protein/metabolism , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/immunology , GATA3 Transcription Factor/metabolism , Interleukin-4/genetics , Interleukin-4/immunology , Mice , Mice, Inbred BALB C , Mice, Transgenic , NFATC Transcription Factors/genetics , NFATC Transcription Factors/immunology , Nuclear Proteins/genetics , Nuclear Proteins/immunology , Nuclear Proteins/metabolism , Phosphorylation/physiology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/immunology , STAT6 Transcription Factor/metabolism , Th2 Cells/cytology , Th2 Cells/immunology , Transcription Factor RelA/genetics , Transcription Factor RelA/immunology , Transcription Factor RelA/metabolism , Transcription Factors/genetics , Transcription Factors/immunology , Transcription Factors/metabolism
15.
Eur J Immunol ; 44(7): 2074-84, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24752800

ABSTRACT

NK cells are the main cells of the innate immune system that produce IFN-γ, and they express this cytokine at early stages of maturation in response to cytokine stimulation. Conversely, acquisition of IFN-γ-competence in CD4(+) T helper cells requires a differentiation process from naïve toward type 1 (Th1) cells, which is associated with epigenetic remodeling at the IFNG locus. In the present study, we show that the ability of NK cells to produce IFN-γ in response to activating receptor (actR) engagement is gradually acquired during terminal differentiation and is accompanied by progressively higher NF-κB activation in response to actR triggering. Moreover, during the differentiation process NK cells gradually display increasing expression of IFNG and TBX21 (encoding T-bet) transcripts and demethylation at the IFNG promoter. This study provides new insights in the molecular mechanisms underlying NK-cell ability to express IFN-γ upon actR engagement. Thus, we propose that in order to efficiently produce IFN-γ in response to infected or transformed cells, NK cells gain Th1-like features, such as higher IFN-γ competence and epigenetic remodeling of the IFNG promoter, during their terminal differentiation.


Subject(s)
Cell Differentiation , Interferon-gamma/biosynthesis , Killer Cells, Natural/immunology , CpG Islands , DNA Methylation , Humans , Interferon-gamma/genetics , Killer Cells, Natural/cytology , NF-kappa B/physiology , NK Cell Lectin-Like Receptor Subfamily K/physiology , Natural Cytotoxicity Triggering Receptor 1/physiology , Natural Cytotoxicity Triggering Receptor 3/physiology , Promoter Regions, Genetic , T-Box Domain Proteins/physiology
16.
Cancer Res ; 73(18): 5647-56, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23878189

ABSTRACT

IFN-α is an antineoplastic agent in the treatment of several solid and hematologic malignancies that exerts strong immune- and autoimmune-stimulating activity. However, the mechanisms of immune activation by IFN-α remain incompletely understood, particularly with regard to CD4(+)CD25(high)Foxp(+) regulatory T cells (Treg). Here, we show that IFN-α deactivates the suppressive function of human Treg by downregulating their intracellular cAMP level. IFN-α-mediated Treg inactivation increased CD4(+) effector T-cell activation and natural killer cell tumor cytotoxicity. Mechanistically, repression of cAMP in Treg was caused by IFN-α-induced MAP-ERK kinase (MEK)/extracellular signal-regulated kinase (ERK)-mediated phosphodiesterase 4 (PDE4) activation and accompanied by downregulation of IFN receptor (IFNAR)-2 and negative regulation of T-cell receptor signaling. IFN-α did not affect the anergic state, cytokine production, Foxp3 expression, or methylation state of the Treg-specific demethylated region (TSDR) within the FOXP3 locus associated with a stable imprinted phenotype of human Treg. Abrogated protection by IFN-α-treated Treg in a humanized mouse model of xenogeneic graft-versus-host disease confirmed IFN-α-dependent regulation of Treg activity in vivo. Collectively, the present study unravels Treg inactivation as a novel IFN-α activity that provides a conceivable explanation for the immune-promoting effect and induction of autoimmunity by IFN-α treatment in patients with cancer and suggests IFN-α for concomitant Treg blockade in the context of therapeutic vaccination against tumor antigens.


Subject(s)
Autoimmunity/drug effects , Cyclic AMP/antagonists & inhibitors , Graft vs Host Disease/immunology , Interferon-alpha/pharmacology , Killer Cells, Natural/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/drug effects , Animals , Cells, Cultured , Cyclic AMP/metabolism , DNA-Binding Proteins/physiology , Extracellular Signal-Regulated MAP Kinases/metabolism , Graft vs Host Disease/metabolism , Graft vs Host Disease/pathology , Humans , Interleukin-2 Receptor alpha Subunit/metabolism , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , Lymphocyte Activation , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphorylation , STAT Transcription Factors/metabolism , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
18.
Immunology ; 137(4): 294-304, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23039181

ABSTRACT

Ligands for E-selectin and P-selectin (E-lig and P-lig) are induced on CD4+ T cells upon differentiation into effector T cells. Glycosyltransferases, especially α 1,3-fucosyltransferase VII (FucT-VII) and core 2 ß1,6-N-acetyl-glycosaminyltransferase I (C2GlcNAcT-I), are critical for their synthesis. We here analysed the signals that control the expression of E-lig, P-lig and mRNA coding for FucT-VII and C2GlcNAcT-I. In line with previous reports, we found that P-lig expression correlates with the regulation of C2GlcNAcT-I, whereas E-lig expression can occur at low levels of C2GlcNAcT-I mRNA but requires high FucT-VII mRNA expression. Interestingly, the two enzymes are regulated by different signals. Activation-induced C2GlcNAcT-I up-regulation under permissive (T helper type 1) conditions was strongly reduced by cyclosporin A (CsA), suggesting the involvement of T-cell receptor-dependent, calcineurin/NFAT-dependent signals in combination with interleukin-12 (IL-12) -mediated signals in the regulation of C2GlcNAcT-I. In contrast, expression of FucT-VII mRNA was not significantly inhibited by CsA. Interleukin-4 inhibited the expression of FucT-VII but IL-2 and IL-7 were found to support induction of FucT-VII and E-lig. E-selectin, P-selectin and their ligands initially appeared to have rather overlapping functions. These findings however, unravel striking differences in the regulation of E-lig and P-lig expression, dictated by the dominance of FucT-VII and C2GlcNAcT-I, respectively, and their dependency on signals from either promiscuous or homeostatic cytokines (FucT-VII) or a strong T-cell receptor signal in combination with inflammatory cytokines in case of C2GlcNAcT-I.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , E-Selectin/metabolism , Fucosyltransferases/physiology , N-Acetylglucosaminyltransferases/physiology , P-Selectin/metabolism , Animals , Cells, Cultured , Cyclosporine/pharmacology , Fucosyltransferases/genetics , Gene Expression Regulation, Enzymologic , Interleukin-2/physiology , Ligands , Mice , Mice, Inbred BALB C , N-Acetylglucosaminyltransferases/genetics , Receptors, Antigen, T-Cell/physiology
19.
Front Immunol ; 3: 264, 2012.
Article in English | MEDLINE | ID: mdl-22969764

ABSTRACT

The human CD4(+)FOXP3(+) T cell population is heterogeneous and consists of various subpopulations which remain poorly defined. Anergy and suppression are two main functional characteristics of FOXP3(+)Treg cells. We used the anergic behavior of FOXP3(+)Treg cells for a better discrimination and characterization of such subpopulations. We compared IL-2-expressing with IL-2-non-expressing cells within the memory FOXP3(+) T cell population. In contrast to IL-2-non-expressing FOXP3(+) cells, IL-2-expressing FOXP3(+) cells exhibit intermediate characteristics of Treg and Th cells concerning the Treg cell markers CD25, GITR, and Helios. Besides lower levels of FOXP3, they also have higher levels of the transcription factors NFATc2, c-Fos, NF-κBp65, and c-Jun. An approach combining flow cytometric measurements with statistical interpretation for quantitative transcription factor analysis suggests that the physiological expression levels not only of FOXP3 but also of NFATc2, c-Jun, c-Fos, and NF-κBp65 are limiting for the decision whether IL-2 is expressed or not in activated peripheral human memory FOXP3(+) cells. These findings demonstrate that concomitant high levels of NFATc2, c-Jun, c-Fos, and NF-κBp65 lead in addition to potential IL-2 expression in those FOXP3(+) cells with low levels of FOXP3. We hypothesize that not only the level of FOXP3 expression but also the amounts of the four transcription factors studied represent determining factors for the anergic phenotype of FOXP3(+) Treg cells.

20.
Cytometry A ; 81(11): 1005-11, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22997026

ABSTRACT

Small molecular inhibitors are excellent tools for manipulating cell reactions. They are widely used in scientific research to study molecular mechanisms of cells under physiological and pathophysiological conditions as well as in clinical applications to treat patients. However, their selectivity is often not well known. Moreover, it can vary according to cell types and the analysis methods used. Therefore, it is usually not possible to make comparisons between the data presented in the literature. Here we analyzed the selectivity of five chosen inhibitors of calcineurin/NFAT activation under the same conditions. Using a combination of fluorescent cell barcoding and phospho-specific flow cytometry we studied the inhibition of activation of NF-κBp65 and MAPK pathways in stimulated primary human Th cells. This semi-high throughput approach enabled us to demonstrate that (i) CsA and NCI3 are around 5 to 10- and 20-fold less potent, respectively, at inhibiting phosphorylation of NF-κBp65 and p38 than activation of NFAT, (ii) AM404 is at least 15-fold selective for NFAT but already toxic at concentrations above 40 µM, (iii) INCA6 is not selective at all, and (iv) BTP1 is at least 100-fold selective for inhibition of NFAT activation relative to NF-κBp65, p38 and ERK1/2 phosphorylation. Altogether, our results not only show the applicability of a semi-high throughput inhibitor test system but also that BTP1 is the most selective inhibitor of calcineurin/NFAT activation among the studied inhibitors under the used conditions.


Subject(s)
Calcineurin Inhibitors , Electronic Data Processing/methods , Flow Cytometry/methods , NFATC Transcription Factors/antagonists & inhibitors , T-Lymphocytes, Helper-Inducer/drug effects , Transcription Factor RelA/antagonists & inhibitors , Arachidonic Acids/pharmacology , Drug Evaluation, Preclinical , Fluorescence , Genes, Reporter , Humans , Imidazoles/pharmacology , Inhibitory Concentration 50 , MAP Kinase Signaling System , NFATC Transcription Factors/metabolism , Nitriles/pharmacology , Phosphorylation , Pyridines/pharmacology , Sulfones/pharmacology , T-Lymphocytes, Helper-Inducer/metabolism , Transcription Factor RelA/metabolism , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...