Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Care ; 19: 226, 2015 May 12.
Article in English | MEDLINE | ID: mdl-25962383

ABSTRACT

INTRODUCTION: Acute respiratory distress syndrome (ARDS) is a major cause of mortality in intensive care units. As there is rising evidence about immuno-modulatory effects of lipid emulsions required for parenteral nutrition of ARDS patients, we sought to investigate whether infusion of conventional soybean oil (SO)-based or fish oil (FO)-based lipid emulsions rich in either n-6 or n-3 fatty acids, respectively, may influence subsequent pulmonary inflammation. METHODS: In a randomized controlled, single-blinded pilot study, forty-two volunteers received SO, FO, or normal saline for two days. Thereafter, volunteers inhaled pre-defined doses of lipopolysaccharide (LPS) followed by bronchoalveolar lavage (BAL) 8 or 24 h later. In the murine model of LPS-induced lung injury a possible involvement of resolvin E1 (RvE1) receptor ChemR23 was investigated. Wild-type and ChemR23 knockout mice were infused with both lipid emulsions and challenged with LPS intratracheally. RESULTS: In volunteers receiving lipid emulsions, the fatty acid profile in the plasma and in isolated neutrophils and monocytes was significantly changed. Adhesion of isolated monocytes to endothelial cells was enhanced after infusion of SO and reduced by FO, however, no difference of infusion on an array of surface adhesion molecules was detected. In neutrophils and monocytes, LPS-elicited generation of pro-inflammatory cytokines increased in the SO and decreased in the FO group. LPS inhalation in volunteers evoked an increase in neutrophils in BAL fluids, which decreased faster in the FO group. While TNF-α in the BAL was increased in the SO group, IL-8 decreased faster in the FO group. In the murine model of lung injury, effects of FO similar to the volunteer group observed in wild-type mice were abrogated in ChemR23 knockout mice. CONCLUSIONS: After infusion of conventional lipid emulsions, leukocytes exhibited increased adhesive and pro-inflammatory features. In contrast, FO-based lipid emulsions reduced monocyte adhesion, decreased pro-inflammatory cytokines, and neutrophil recruitment into the alveolar space possibly mediated by ChemR23-signaling. Lipid emulsions thus exert differential effects in human volunteers and mice in vivo. TRIAL REGISTRATION: DRKS00006131 at the German Clinical Trial Registry, 2014/05/14.


Subject(s)
Fat Emulsions, Intravenous/administration & dosage , Immunomodulation/drug effects , Immunomodulation/immunology , Pneumonia/drug therapy , Pneumonia/immunology , Animals , Cells, Cultured , Fish Oils/administration & dosage , Humans , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/immunology , Mice , Mice, Knockout , Pilot Projects , Single-Blind Method , Soybean Oil/administration & dosage
2.
Br J Nutr ; 106(1): 27-32, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21269537

ABSTRACT

Long-term administration of PUFA is known to modulate immune functions and apoptotic pathways depending on the respective amount of n-6 and n-3 fatty acids (FA). Data on short-term effects on apoptotic pathways are rare. Apoptosis of splenic lymphocytes is the hallmark of detrimental sepsis. Therefore, we aimed to compare the immediate effects of parenterally administered n-6-enriched soyabean oil (SO)- and n-3-enriched fish oil (FO)-based lipid emulsions after laparotomy (LAP; sham procedure) and after induction of acute, severe sepsis by caecal ligation and incision. After 390 min of observation time, plasma was analysed for IL-1ß, IL-6 and NEFA. Apoptosis in splenic lymphocytes was quantified by Annexin-V expression. After LAP, infusion of both FO and SO did not change cytokine concentrations. Sepsis increased both cytokines. FO but not SO further augmented the rise. After LAP, SO increased NEFA, and both lipid emulsions reduced free arachidonic acid (AA). Sepsis resulted in a dramatic decrease in NEFA and AA. The drop in NEFA and AA was prevented by both SO and FO. In addition, FO resulted in an increased concentration of n-3 FA under both conditions. Infusion of both lipid emulsions induced apoptosis in splenic lymphocytes after LAP. Sepsis-induced apoptosis was not further enhanced by FO or SO. The present study shows that short-term administration of FO as opposed to SO caused pro-inflammatory effects during sepsis. Moreover, short-term administration of both SO and FO suffices to induce apoptosis in splenic lymphocytes. Finally, SO and FO do not further enhance sepsis-induced splenic apoptosis.


Subject(s)
Apoptosis/drug effects , Cytokines/metabolism , Fat Emulsions, Intravenous/administration & dosage , Fat Emulsions, Intravenous/pharmacology , Lymphocytes/drug effects , Sepsis/metabolism , Animals , Cytokines/genetics , Drug Administration Schedule , Fatty Acids, Nonesterified/blood , Fish Oils/administration & dosage , Fish Oils/pharmacology , Gene Expression Regulation/drug effects , Inflammation/blood , Inflammation/metabolism , Lymphocytes/cytology , Male , Random Allocation , Rats , Rats, Sprague-Dawley , Soybean Oil/administration & dosage , Soybean Oil/pharmacology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...