Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Immunol Rev ; 205: 207-19, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15882355

ABSTRACT

A decline in T-cell responses and a switch to memory T-cell predominance occur with aging. We have used the T-cell receptor (TCR) transgenic mouse model to study age-associated changes in T-cell responses that are a consequence of shifts in subset representation versus changes intrinsic to T cells versus changes in the 'aged' microenvironment. We found that naive transgene-expressing (Tg(+)) CD4(+) T cells from aged mice respond to antigen with reduced interleukin-2 (IL-2) production, decreased cell expansion, and limited differentiation to effectors. Comparable to the characteristic accumulation of memory phenotype T cells in aged humans and conventional rodents, Tg(+) CD4(+) T cells from old OTII and 6.5 TCR transgenic mice acquire a memory phenotype without immunization and become hyporesponsive. The naive Tg(+) CD8(+) T cells from aged 2C mice expressed activation markers, produced IL-2, proliferated, and differentiated into cytotoxic T lymphocytes as efficiently as their young counterparts. Responses by adoptive transferred Tg(+) cells from young mice, immunized in young and old conventional hosts, indicated that the host age influences the onset of cell division, level of cell expansion, and number of cytokine-producing cells. Co-transfer of dendritic cells (DCs) from young and less so from aged conventional mice partially restored responses. Furthermore, DCs and T-cell migration to draining lymphoid organs was reduced due to deficiencies intrinsic to aged cells and the aged environment. Thus, alterations in T-cell responses in aging are attributable to intrinsic and environmental influences.


Subject(s)
Aging/immunology , Environment , T-Lymphocytes/immunology , Animals , Antigens/immunology , Cell Proliferation , Humans , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/cytology
2.
J Exp Med ; 197(7): 875-83, 2003 Apr 07.
Article in English | MEDLINE | ID: mdl-12668647

ABSTRACT

The development of effector and memory CD4 cell populations depends upon both T cell receptor (TCR) engagement of peptide/major histocompatibility complex (MHC) class II complexes and ligation of costimulatory molecules with counter receptors on antigen-presenting cells (APCs). We showed previously that sustained interactions with APCs could be crucial for optimal expansion of CD4 cells and for development of effectors that secrete cytokines associated with Th2 cells. Using an adoptive transfer model with TCR transgenic CD4 cells, we now show that responses of CD4 cells primed in B cell-deficient mice become aborted, but are fully restored upon the transfer of activated B cells. Although B cells have the capacity to secrete multiple cytokines that could affect CD4 priming, including IL-4, we were unable to distinguish a role for cytokines that are secreted by B cells. However, B cell costimulation via the OX40L/OX40 pathway that has been implicated in CD4 cell expansion, survival, and Th2 development was required. Th2 but not Th1 responses were impaired in OX40L-deficient recipients and normal responses were restored with OX40L sufficient B cells. The results suggest that without engagement of OX40L on B cells, CD4 cell responses to many protein Ag would be dominated by Th1 cytokines. These data have important implications for strategies to achieve optimal priming of CD4 subsets.


Subject(s)
B-Lymphocytes/physiology , CD4-Positive T-Lymphocytes/physiology , Cytokines/biosynthesis , Membrane Glycoproteins/physiology , Th2 Cells/immunology , Animals , Antigen-Presenting Cells/physiology , Interleukin-13/biosynthesis , Interleukin-2/biosynthesis , Interleukin-4/biosynthesis , Mice , Mice, Inbred C57BL , OX40 Ligand , Tumor Necrosis Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...