Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Vet Res Forum ; 13(2): 169-176, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35919852

ABSTRACT

Piglets suffer from diarrhea caused by the Shiga toxin-producing Escherichia coli (STEC) and can be carriers of the bacteria, with public health consequences in developing countries. The aim of the present study was to study the prevalence of STEC O157 in feces of 465 piglets and 54 food mixes from backyard systems, the antimicrobial susceptibility of STEC and the frequency of genes encoding extended-spectrum ß-lactamases. The E. coli was isolated from 75.90 % of the evaluated feces. The STEC strains were identified in 33.11% of the sampled population and in 43.60% of the piglets carrying E. coli. Among STEC strains, the stx1 gene was the most frequent (22.30%). The rfbO157 gene was amplified in 47.40% of the STEC strains. High frequencies of STEC strains were not susceptible to ampicillin, carbenicillin and tetracycline. The blaTEM gene (52) was the most frequent among strains not susceptible to ampicillin. Class 1 integrons were the most frequent in those strains. Of the identified STEC strains, 48.70% were considered as multi-drug resistant and 1.90% were considered extensively drug resistant. In the supplied food, STEC O157 strains were identified in 25.00% of the STEC strains. We conclude that the piglets from backyard systems are carriers of STEC O157 strains not susceptible to common antibiotics, including penicillins and tetracyclines. In addition, supplied food is a source of this type of pathogenic bacteria. Through their direct contact with humans, the piglets and food represent a potential source of bacterial dissemination capable of producing gastrointestinal infections in humans.

2.
Front Vet Sci ; 7: 99, 2020.
Article in English | MEDLINE | ID: mdl-32258064

ABSTRACT

The green iguana appears to be a carrier for bacteria causing gastrointestinal infections in humans. The presence of diarrheagenic E. coli (DEC) pathotypes, however, has not been studied in this reptile. The aim of the current work was to investigate the prevalence of DEC in the intestines of 240 captive green iguanas, their phylogenetic groups, and the antibiotic susceptibility profile. E. coli strains were isolated from 41.7% (N = 100/240) of the intestinal content of green iguanas. DEC strains was identified in 25.9% of the screened population and were detected in the majority (62%, p = 0.009) of those reptiles carrying E. coli strains. Among DEC strains, STEC strains carrying the stx1 gene were the most prevalent pathotype isolated (38.7%), followed by EAEC and ETEC (27.4% each). Genetic markers of DEC strains belonging to the EHEC pathotype were not detected. More than a half of DEC strains were classified into the Clade I-II phylogroup (64.5%), followed by the phylogroup A (14.5%). The antibiotic susceptibility method demonstrated that a high proportion of DEC strains were resistance, or non-susceptible, to carbenicillin, amikacin, and ampicillin. We conclude that the green iguana kept in captivity is a carrier of DEC strains bearing resistance to first-line antibiotics, including penicillins. Given the increase presence of the green iguana in Latin American households, these reptiles represent a potential source of transmission to susceptible humans and therefore a potential source of gastrointestinal disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...