Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1312: 342788, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834273

ABSTRACT

BACKGROUND: Mineral oil aromatic hydrocarbon (MOAH) analysis in foods is a major analytical challenge. Quantification is associated with a high uncertainty. The sources of uncertainty are multiple, but the major one is related to data interpretation and integration, which is partially derived from insufficiently efficient sample preparation. Recently, an updated ISO method for the analysis of mineral oil in fats and oils and a standard operating procedure for infant formula analysis have been published. Both methods reported significantly different (up to 1.25) distributions of the internal standards used for quantification (i.e., tri-tert-butyl benzene (TBB) and 2-methyl naphthalene (2-MN)) over the different solvent phases used in the saponification step. RESULTS: In this work, a microwave-assisted saponification and extraction method was optimized for MOAH analysis to solve the problem related to the MOAH internal standards partition. The paper examines the impact of the solvent mixture used, the concentration of KOH on the partition of TBB and 2-MN, and the effect of the matrix and the washing step to extract the unsaponifiable fraction containing the mineral oils. SIGNIFICANCE: The optimized procedure achieved a TBB/2-MN ratio of 1.05 ± 0.01 tested in five different fats and oils, namely, sunflower, rapeseed, coconut, palm, and extra virgin olive oils. The method can significantly contribute to reducing the uncertainty of the MOAH quantification when saponification is applied.


Subject(s)
Microwaves , Hydrocarbons, Aromatic/analysis , Mineral Oil/analysis , Mineral Oil/chemistry
2.
Front Chem ; 11: 1322811, 2023.
Article in English | MEDLINE | ID: mdl-38099191

ABSTRACT

Since the ban on single-use plastic articles in Europe, the food contact material (FCM) industry has been forced to move to more sustainable alternatives. Paper and board FCM are convenient alternatives but must be safe for consumers. This study aims to investigate potential migrations of various substances (e.g., plasticizers, photoinitiators, primary aromatic amines, mineral oil, and bisphenols) from straws and takeaway articles made of paper and board. Twenty straws and fifty-eight takeaway articles were carefully selected and investigated using liquid and gas chromatography coupled with tandem mass spectrometry or flame ionization detector. Fourteen substances of all the targeted categories were found in takeaway articles, including seven plasticizers, two photoinitiators, one primary aromatic amine, two bisphenols, and the saturated and aromatic fraction of mineral oil (MOSH and MOAH, respectively). In straws, fewer substances were detected, i.e., six substances, including three plasticizers, one photoinitiator, MOSH, and MOAH. At least one of the target substances was detected in 88% of the samples, demonstrating the importance of further evaluation of these materials. Finally, the associated risks were assessed, highlighting the potential risks for several types of articles regarding bisphenol A, one primary aromatic amine (3.3-DMB), and MOSH and MOAH.

3.
Anal Bioanal Chem ; 415(21): 5067-5082, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37147559

ABSTRACT

Mineral oil hydrocarbons (MOH) contain a wide structural diversity of molecules, for which the reference method of analysis is the online coupled liquid chromatography-gas chromatography with flame ionization detection (LC-GC-FID). These compounds are very heterogeneous from a toxicological viewpoint, and an accurate risk assessment when dealing with a MOH contamination can only be performed if sufficient information is available on the types of structures present (i.e., number of carbons, degree of alkylation, number of aromatic rings). Unfortunately, the separation performances of the current LC-GC-FID method are insufficient for such characterization, not even mentioning the possible coelution of interfering compounds which additionally hinder MOH determination. Comprehensive two-dimensional gas chromatography (GC × GC), while mostly used for confirmation purposes in the past, starts to prove its relevance for overcoming the weaknesses of the LC-GC method and reaching even better the analytical requirements defined in the latest EFSA opinion. The present paper therefore aims at highlighting how GC × GC has contributed to the understanding of the MOH topic, how it has developed to meet the requirements of MOH determination, and how it could play a role in the field for overcoming many of the current analytical and toxicological challenges related to the topic.

4.
Article in English | MEDLINE | ID: mdl-36608113

ABSTRACT

The goal of this work was to investigate the impact of refining on coconut oil particularly on the most toxicologically relevant fraction of the mineral oil aromatic hydrocarbon (MOAH) contamination, namely the fraction composed by the three to seven aromatic rings. A fully integrated platform consisting of a liquid chromatography (LC), a comprehensive multidimensional gas chromatography (GC) (LC-GC × GC) and flame ionization detector (FID) was used to obtained a more detailed characterization of the MOAH sub-classes distribution. The revised EN pr 16995:2017-08 official method was used for preparing the samples, both with and without the auxiliary epoxidation step. Crude coconut oil was spiked with different MOAH standards, namely naphthalenes, alkylated naphthalenes, benzo(a)pyrene, and its alkylated homologues. Refining was modelled by deodorization at 230 °C, stripping with 10 kg/h of steam under 1 mbar vacuum for 3 h. Complete removal of the naphthalenes and reduction of more than 98.8% of the benzo(a)pyrenes was observed. Epoxidation had a significant impact on the MOAH fraction with more than three rings, but with a high dependency on the sample matrix, being significantly less evident in the refined samples than in the crude ones.


Subject(s)
Hydrocarbons, Aromatic , Petroleum , Mineral Oil/analysis , Coconut Oil/analysis , Food Contamination/analysis , Hydrocarbons, Aromatic/analysis , Chromatography, Gas/methods , Petroleum/analysis
5.
J Chromatogr A ; 1677: 463208, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35870274

ABSTRACT

Mineral oil is an ubiquitous food contaminant potentially toxic. It is generally divided into aromatic hydrocarbons (MOAH) and saturated hydrocarbons (MOSH). These compounds are currently under investigation by the European Union to determine their occurrence and their toxicity before legislating on the matter. Although the discussion mainly focuses on food, animal feed can indirectly contribute to human exposure to such a contaminant. In this study, seven commercial feeds were analyzed. The analyses were carried out in two different Universities (Udine-IT and Liège-BE), performing the same sample preparation protocol: microwave-assisted saponification and extraction followed by epoxidation for the MOAH fraction. The final determination was performed by hyphenated liquid-gas chromatography (LC-GC) and LC coupled to comprehensive multidimensional gas chromatography (LC-GC × GC) with parallel detection, namely flame ionization detector (FID) and time-of-flight mass spectrometer (ToFMS). The results obtained by the two laboratories were generally in good agreement. The results obtained by LC-GC × GC-ToFMS/FID platform provided consistent results, with the advantages of more robust data interpretation that can compensate for problems occurring during purification. Moreover, the coupling of enhanced separation obtained by GC × GC and the MS information allowed for a more in-depth characterization of the contamination.


Subject(s)
Food Contamination , Mineral Oil , Animals , Chromatography, Gas/methods , Chromatography, Liquid/methods , Flame Ionization , Food Contamination/analysis , Humans , Mineral Oil/analysis
6.
J Chromatogr A ; 1643: 462044, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33744654

ABSTRACT

The determination of the level of mineral oil contamination in foods is a well-known problem. This class of contaminants is generally divided into mineral oil saturated and aromatic hydrocarbons with different toxicological relevance and analytical challenges. Among the many challenges, data interpretation and integration represent an important source of uncertainty in the results provided by different laboratories leading to a variation evaluated on the order of 20%. The use of multidimensional comprehensive gas chromatography (GC × GC) has been proposed to support the data interpretation but the integration and the reliability of the results using this methodology has never been systematically evaluated. The aim of this work was to assess the integration and quantification performance of a two-dimensional (2D) software. The data were generated using a novel, completely automated platform, namely LC-GC × GC coupled to dual detectors, i.e., time-of-flight mass spectrometer (MS) and flame ionization detector (FID). From a systematic study of the failures of the two-dimensional quantification approach a novel solution was proposed for simplifying and automating the entire process. The novel algorithm was tested on ad hoc created samples (i.e. a paraffin mixture added of n-alkanes) and real-world samples proving the agreement of the results obtained by LC-GC × GC and the traditional mono-dimensional approach. Moreover, the benefits of using an entirely integrated platform were emphasized, particularly regarding the identity confirmation capability of the MS data, which can be easily translated into the 2D FID quantification feature.


Subject(s)
Hydrocarbons, Aromatic/analysis , Mineral Oil/analysis , Alkanes/analysis , Chromatography, Gas , Chromatography, Liquid , Flame Ionization , Mass Spectrometry , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...