Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(23): 16550-16560, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38829286

ABSTRACT

Metallophilic interactions, specifically argentophilic (Ag⋯Ag) and aurophilic (Au⋯Au) interactions, play a crucial role in stabilizing various molecular and solid-state structures. In this manuscript, we present a convenient method to estimate the strength of argentophilic and aurophilic interactions based on quantum theory of atoms in molecules (QTAIM) parameters evaluated at the bond critical points connecting the metal centres. We employ density functional theory (DFT) calculations and the QTAIM parameters to develop this energy predictor. To validate the reliability and applicability of our method, we test it using a selection of X-ray crystal structures extracted from the cambridge structural database (CSD), where argentophilic and aurophilic interactions are known to be significant in their solid-state arrangements. This method offers a distinct advantage in systems where multiple interactions, beyond metallophilic interactions, contribute to the overall stability of the structure. By employing our approach, researchers can distinctly quantify the strength of argentophilic and aurophilic interactions, facilitating a deeper understanding of their impact on molecular and solid-state properties. This method fills a critical gap in the existing literature, offering a valuable tool to researchers seeking to unravel the intricate interactions in metal-containing compounds.

2.
Chemphyschem ; : e202400161, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687202

ABSTRACT

Herein we have investigated the formation and interplay of several noncovalent interactions (NCIs) involved in the inhibition of human monoamine oxidase B (MAO B). Concretely, an inspection of the Protein Data Bank (PDB) revealed the formation of a halogen bond (HlgB) between a diphenylene iodonium (DPI) inhibitor and a water molecule present in the active site, in addition to a noncovalent network of interactions (e. g. lone pair-π, hydrogen bonding, OH-π, CH-π and π-stacking interactions) with surrounding protein residues. Several theoretical models were built to understand the strength and directionality features of the HlgB in addition to the interplay with other NCIs present in the active site of the enzyme. Besides, a computational study was carried out using DPI as HlgB donor and several electron rich molecules (CO, H2O, CH2O, HCN, pyridine, OCN-, SCN-, Cl- and Br-) as HlgB acceptors. The results were analyzed using several state-of-the-art computational tools. We expect that our results will be useful for those scientists working in the fields of rational drug design, chemical biology as well as supramolecular chemistry.

3.
Int J Mol Sci ; 24(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37958580

ABSTRACT

In this study, a series of electron donor (-NH2, -NMe2 and -tBu) and electron-withdrawing substituents (-F, -CN and -NO2) were used to tune the nucleophilicity or electrophilicity of a series of square planar Ni2+, Pd2+ and Pt2+ malonate coordination complexes towards a pentafluoroiodobenzene and a pyridine molecule. In addition, Bader's theory of atoms in molecules (AIM), noncovalent interaction plot (NCIplot), molecular electrostatic potential (MEP) surface and natural bond orbital (NBO) analyses at the PBE0-D3/def2-TZVP level of theory were carried out to characterize and discriminate the role of the metal atom in the noncovalent complexes studied herein. We hope that the results reported herein may serve to expand the current knowledge regarding these metals in the fields of crystal engineering and supramolecular chemistry.


Subject(s)
Electrons , Models, Molecular , Hydrogen Bonding , Static Electricity
4.
Chem Commun (Camb) ; 59(86): 12847-12850, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37791416

ABSTRACT

Combining computations and X-ray structure analysis we have demonstrated that [Pt(CN4)]2- can behave as a Lewis acid inside an enzyme's cavity. The nature of a counterintuitive contact found between a catalytically active GLN residue belonging to a mitochondrial synthase and the Pt(II) center was investigated by combining molecular dynamics and quantum mechanics calculations. Results confirm the electron acceptor role of [Pt(CN4)]2-, serving as an inspiration for the design of biomolecular cages able to tweak the nucleophilic/electrophilic character of an organometallic compound.

5.
Chemphyschem ; 24(24): e202300585, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37792318

ABSTRACT

Some literature reports have shown the existence of short Hg(II)⋅⋅⋅d8 [M] (M=Pd, Pt) contacts between linear Hg(II) and square planar d8 [M] complexes that have been defined as heterometallophilic interactions. Linear L-Hg(II)-L complexes exhibit a π-hole or positive belt of electrostatic potential at the Hg atom, whereas late transition metals can serve as effective electron donors through their filled dz 2 orbitals. This study provides compelling evidence that Hg(II)⋅⋅⋅d8 [M] interactions should be more appropriately termed spodium bonds.

6.
Phys Chem Chem Phys ; 25(43): 30040-30048, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37905702

ABSTRACT

Computations at the PBE0-D3/def2-TZVP level of theory in conjunction with a Protein Data Bank (PDB) survey have provided first time evidence of favorable noncovalent interactions between ADP metavanadate (VO4) and ADP orthovanadate (VO5) and electron rich atoms. These involve a σ-hole present in the V atom and the lone pairs belonging to (i) protein residues (e.g., serine (SER), glutamate (GLU) or histidine (HIS)), (ii) backbone carbonyl groups and (iii) water molecules. A computational study has been carried out to rationalize the physical nature and directionality of the interaction in addition to its plausible biological role. The results reported herein are expected to have an impact in the fields of medicinal chemistry, bioinorganic chemistry and chemical biology.


Subject(s)
Glutamic Acid , Water , Models, Molecular , Databases, Protein , Water/chemistry , Electrons
7.
Inorg Chem ; 62(45): 18524-18532, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37902775

ABSTRACT

In this study, the stability, directionality, and physical nature of Spodium bonds (SpBs, an attractive noncovalent force involving elements from group 12 and Lewis bases) between methylmercury (MeHg) and ethylmercury (EtHg) and amino acids (AAs) have been analyzed from both a structural (X-ray analysis) and theoretical (RI-MP2/def2-TZVP level of theory) point of view. More in detail, an inspection of the Protein Data Bank (PDB) reported evidence of noncovalent contacts between MeHg and EtHg molecules and electron-rich atoms (e.g., O atoms belonging to the protein backbone and S atoms from MET residues or the π-systems of aromatic AAs such as TYR or TRP). These results were rationalized through a computational study using MeHg coordinated to a thiolate group as a theoretical model and several neutral and charged electron-rich molecules (e.g., benzene, formamide, or chloride). The physical nature of the interaction was analyzed from electrostatics and orbital perspectives by performing molecular electrostatic potential (MEP) and natural bonding orbital (NBO) analyses. Lastly, the noncovalent interactions plot (NCIplot) technique was used to provide a qualitative view of the strength of the Hg SpBs and compare them to other ancillary interactions present in these systems as well as to shed light on the extension of the interaction in real space. We believe that the results derived from our study will be useful to those scientists devoted to protein engineering and bioinorganic chemistry as well as to expanding the current knowledge of SpBs among the chemical biology community.


Subject(s)
Mercury , Methylmercury Compounds , X-Rays , Amino Acids , Electrons
8.
Int J Mol Sci ; 24(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37685843

ABSTRACT

In this work, intra- and intermolecular halogen and chalcogen bonds (HlgBs and ChBs, respectively) present in the solid state of nucleic acids (NAs) have been studied at the RI-MP2/def2-TZVP level of theory. To achieve this, a Protein Data Bank (PDB) survey was carried out, revealing a series of structures in which Br/I or S/Se/Te atoms belonging to nucleobases or pentose rings were involved in noncovalent interactions (NCIs) with electron-rich species. The energetics and directionality of these NCIs were rationalized through a computational study, which included the use of Molecular Electrostatic Potential (MEP) surfaces, the Quantum Theory of Atoms in Molecules (QTAIM), and Non Covalent Interaction plot (NCIplot) and Natural Bonding Orbital (NBO) techniques.


Subject(s)
Chalcogens , Nucleic Acids , Crystallography , Databases, Factual , Halogens
9.
Phys Chem Chem Phys ; 25(17): 12409-12419, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37093130

ABSTRACT

In this study, the ability of CF3 groups to bind to the electron-rich side chains and backbone groups of proteins has been investigated by combining a Protein Data Bank (PDB) survey and ab initio quantum mechanics calculations. More precisely, an inspection of the PDB involving organic ligands containing a CF3 group and electron-rich atoms (A = N, O and S) in the vicinity revealed 419 X-ray structures exhibiting CF3⋯A tetrel bonds (TtBs). In a posterior stage, those hits that exhibited the most relevant features in terms of directionality and intermolecular distance were selected for theoretical calculations at the RI-MP2/def2-TZVPD level of theory. Also, Hammett's regression plots of several TtB complexes involving meta- and para-substituted benzene derivatives were computed to shed light on the substituent effects. Moreover, the TtBs were characterized through several state-of-the-art computational techniques, such as the Quantum Theory of Atoms in Molecules (QTAIM) and Noncovalent Interactions plot (NCIplot) methodologies. We believe that the results gathered from our study will be useful for rational drug design and biological communities as well as for further expanding the role of this interaction to biomedical applications.

10.
J Chem Inf Model ; 63(10): 3018-3029, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37014944

ABSTRACT

Understanding the molecular interactions that drive peptide folding is crucial to chemistry and biology. In this study, we analyzed the role of CO···CO tetrel bonding (TtB) interactions in the folding mechanism of three different peptides (ATSP, pDIQ, and p53), which exhibit a different propensity to fold in an α helix motif. To achieve this goal, we used both a recently developed Bayesian inference approach (MELDxMD) and Quantum Mechanics (QM) calculations at the RI-MP2/def2-TZVP level of theory. These techniques allowed us to study the folding process and to evaluate the strength of the CO···CO TtBs as well as the synergies between TtBs and hydrogen-bonding (HB) interactions. We believe that the results derived from our study will be helpful for those scientists working in computational biology, peptide chemistry, and structural biology.


Subject(s)
Peptides , Tumor Suppressor Protein p53 , Bayes Theorem , Hydrogen Bonding , Models, Molecular , Peptides/chemistry , Protein Binding , Humans
11.
Inorg Chem ; 62(17): 6740-6750, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37083254

ABSTRACT

In this study, we provide crystallographic (Protein Data Bank (PDB) inspection) and theoretical (RI-MP2/def2-TZVP//PBE0-D3/def2-SVP level of theory) evidence of the involvement of nucleobases in Regium-π bonds (RgBs). This noncovalent interaction involves an electrophilic site located on an element of group 11 (Cu, Ag, and Au) and an electron-rich species (lone pair, LP donor, or π-system). Concretely, an initial PDB search revealed several examples where RgBs were undertaken involving DNA bases and Cu(II), Ag(I), and Au(I/III) ions. While coordination positions (mainly at the N atoms of the base) are well known, the noncovalent binding force between these counterparts has been scarcely studied in the literature. In this regard, computational models shed light on the strength and directionality properties of the interaction, which was also further characterized from a charge-density perspective using Bader's "atoms in molecules" (AIM) theory, noncovalent interaction plot (NCIplot) visual index, and natural bonding orbital (NBO) analyses. As far as our knowledge extends, this is the first time that RgBs in metal-DNA complexes are systematically analyzed, and we believe the results might be useful for scientists working in the field of nucleic acid engineering and chemical biology as well as to increase the visibility of the interaction among the biological community.


Subject(s)
Coordination Complexes , Models, Theoretical , DNA/chemistry , Electrons
12.
Molecules ; 28(5)2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36903636

ABSTRACT

In this manuscript substituent effects in several silicon tetrel bonding (TtB) complexes were investigated at the RI-MP2/def2-TZVP level of theory. Particularly, we have analysed how the interaction energy is influenced by the electronic nature of the substituent in both donor and acceptor moieties. To achieve that, several tetrafluorophenyl silane derivatives have been substituted at the meta and para positions by several electron donating and electron withdrawing groups (EDG and EWG, respectively), such as -NH2, -OCH3, -CH3, -H, -CF3 and -CN substituents. As electron donor molecules, we have used a series of hydrogen cyanide derivatives using the same EDGs and EWGs. We have obtained the Hammett's plots for different combinations of donors and acceptors and in all cases we have obtained good regression plots (interaction energies vs. Hammet's σ parameter). In addition, we have used the electrostatic potential (ESP) surface analysis as well as the Bader's theory of atoms in molecules (AIM) and noncovalent interaction plot (NCI plot) techniques to further characterize the TtBs studied herein. Finally, a Cambridge Structural Database (CSD) inspection was carried out, retrieving several structures where halogenated aromatic silanes participate in tetrel bonding interactions, being an additional stabilization force of their supramolecular architectures.

13.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36982603

ABSTRACT

Unraveling the binding preferences involved in the formation of a supramolecular complex is key to properly understand molecular recognition and aggregation phenomena, which are of pivotal importance to biology. The halogenation of nucleic acids has been routinely carried out for decades to assist in their X-ray diffraction analysis. The incorporation of a halogen atom on a DNA/RNA base not only affected its electronic distribution, but also expanded the noncovalent interactions toolbox beyond the classical hydrogen bond (HB) by incorporating the halogen bond (HalB). In this regard, an inspection of the Protein Data Bank (PDB) revealed 187 structures involving halogenated nucleic acids (either unbound or bound to a protein) where at least 1 base pair (BP) exhibited halogenation. Herein, we were interested in disclosing the strength and binding preferences of halogenated A···U and G···C BPs, which are predominant in halogenated nucleic acids. To achieve that, computations at the RI-MP2/def2-TZVP level of theory together with state of the art theoretical modeling tools (including the computation of molecular electrostatic potential (MEP) surfaces, the quantum theory of "Atoms in Molecules" (QTAIM) and the non-covalent interactions plot (NCIplot) analyses) allowed for the characterization of the HB and HalB complexes studied herein.


Subject(s)
Halogenation , Halogens , Base Pairing , Models, Molecular , Halogens/chemistry , RNA , Hydrogen Bonding , Quantum Theory
14.
Nucleic Acids Res ; 51(4): 1625-1636, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36727436

ABSTRACT

Structural, regulatory and enzymatic proteins interact with DNA to maintain a healthy and functional genome. Yet, our structural understanding of how proteins interact with DNA is limited. We present MELD-DNA, a novel computational approach to predict the structures of protein-DNA complexes. The method combines molecular dynamics simulations with general knowledge or experimental information through Bayesian inference. The physical model is sensitive to sequence-dependent properties and conformational changes required for binding, while information accelerates sampling of bound conformations. MELD-DNA can: (i) sample multiple binding modes; (ii) identify the preferred binding mode from the ensembles; and (iii) provide qualitative binding preferences between DNA sequences. We first assess performance on a dataset of 15 protein-DNA complexes and compare it with state-of-the-art methodologies. Furthermore, for three selected complexes, we show sequence dependence effects of binding in MELD predictions. We expect that the results presented herein, together with the freely available software, will impact structural biology (by complementing DNA structural databases) and molecular recognition (by bringing new insights into aspects governing protein-DNA interactions).


Subject(s)
DNA-Binding Proteins , DNA , Software , Bayes Theorem , Computational Biology/methods , DNA/chemistry , Protein Binding , Protein Conformation , Proteins/chemistry , DNA-Binding Proteins/chemistry
15.
Molecules ; 27(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36557974

ABSTRACT

The chalcogen bond has been recently defined by the IUPAC as the attractive noncovalent interaction between any element of group 16 acting as an electrophile and any atom (or group of atoms) acting as a nucleophile. Commonly used chalcogen bond donor molecules are divalent selenium and tellurium derivatives that exhibit two σ-holes. In fact, the presence of two σ-hole confers to the chalcogen bonding additional possibilities with respect to the halogen bond, the most abundant σ-hole interaction. In this manuscript, we demonstrate that selenoxides are good candidates to be used as σ-hole donor molecules. Such molecules have not been analyzed before as chalcogen bond donors, as far as our knowledge extends. The σ-hole opposite to the Se=O bond is adequate for establishing strong and directional ChBs, as demonstrated herein using the Cambridge structural database (CSD) and density functional theory (DFT) calculations. Moreover, the effect of the metal coordination of the selenoxide to transition metals on the strength of the ChB interaction has been analyzed theoretically. The existence of the ChBs has been further supported by the quantum theory of atoms in molecules (QTAIM) and the noncovalent interaction plot (NCIPlot).

16.
Phys Chem Chem Phys ; 24(40): 24983-24991, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36214369

ABSTRACT

Identifying and characterizing new binding events between electron donor and acceptor counterparts represents a crucial step to complete the molecular recognition and aggregation picture, which is key to chemistry and biology. In this study we interrogated both the PDB (Protein Data Bank) and CSD (Cambridge Structural Database) for the presence of Cu and Ag regium-π (Rg-π) bonds (an attractive noncovalent force between elements from group 11 and π-systems). Concretely, we found evidence of the plausible biological role of the interaction in protein-DNA systems, bacterial Ag extrusion processes and Heme group redox functionality. Furthermore, we also highlighted the implications of Rg-π bonds in the crystal packing of two host-guest systems, where this interaction is key for the binding and recognition of small organic molecules as well as for the encapsulation of organometallic complexes. Theoretical models were used to analyse the strength of the interaction (RI-MP2/def2-TZVP level of theory) together with QTAIM (Quantum Theory of Atoms in Molecules), NBO (Natural Bonding Orbital) and NCIplot (Non Covalent Interactions plot) analyses, which further assisted in the characterization of the regium-π interactions described herein. We expect the results from this study will be useful to attract the attention of chemical biologists as well as to expand the potential of the interaction to the supramolecular chemistry and crystal engineering communities.


Subject(s)
Biology , Heme , Hydrogen Bonding , Models, Molecular , DNA
17.
Chemistry ; 28(50): e202201660, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-35670547

ABSTRACT

In this study we propose to coin the term Wolfium bond (WfB) to refer to a net attractive force (noncovalent interaction) between any element of group 6 and electron donor atoms (neutral molecules or anions) and to differentiate it from a coordination bond (metal-ligand interaction). We provide evidence of the existence of this interaction by inspecting the X-ray crystal structure of proteins containing Molybdopterin and Tungstopterin cofactors from the Protein Data Bank (PDB). The plausible biological role of the interaction as well as its physical nature (antibonding Wf-Ligand orbital involved) are also analyzed by means of ab initio calculations (RI-MP2/def2-TZVP level of theory), Atoms in Molecules (AIM), Natural Bond Orbital (NBO) and Noncovalent Interactions plot (NCIplot) analyses.


Subject(s)
Metalloproteins , Quantum Theory , Ligands , Molybdenum Cofactors , Thermodynamics
18.
Int J Mol Sci ; 23(8)2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35457005

ABSTRACT

In this study the ability of metal coordinated Chalcogen (Ch) atoms to undergo Chalcogen bonding (ChB) interactions has been evaluated at the PBE0-D3/def2-TZVP level of theory. An initial CSD (Cambridge Structural Database) inspection revealed the presence of square planar Pd/Pt coordination complexes where divalent Ch atoms (Se/Te) were used as ligands. Interestingly, the coordination to the metal center enhanced the σ-hole donor ability of the Ch atom, which participates in ChBs with neighboring units present in the X-ray crystal structure, therefore dictating the solid state architecture. The X-ray analyses were complemented with a computational study (PBE0-D3/def2-TZVP level of theory), which shed light into the strength and directionality of the ChBs studied herein. Owing to the new possibilities that metal coordination offers to enhance or modulate the σ-hole donor ability of Chs, we believe that the findings presented herein are of remarkable importance for supramolecular chemists as well as for those scientists working in the field of solid state chemistry.


Subject(s)
Metals , Ligands , Models, Molecular
19.
Nat Chem ; 14(4): 384-391, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35379968

ABSTRACT

The main feedstock for the value-added phosphorus chemicals used in industry and research is white phosphorus (P4), from which the key intermediate for forming P(III) compounds is PCl3. Owing to its high reactivity, syntheses based on PCl3 are often accompanied by product mixtures and laborious work-up procedures, so an alternative process to form a viable P(III) transfer reagent is desirable. Our concept of oxidative onioation, where white phosphorus is selectively converted into triflate salts of versatile P1 transfer reagents such as [P(LN)3][OTf]3 (LN is a cationic, N-based substituent; that is, 4-dimethylaminopyridinio), provides a convenient alternative for the implementation of P-O, P-N and P-C bonds while circumventing the use of PCl3. We use p-block element compounds of type RnE (for example, Ph3As or PhI) to access weak adducts between nitrogen Lewis bases LN and the corresponding dications [RnELN]2+. The proposed equilibrium between [RnELN]2+ + LN and [RnE(LN)2]2+ allows for the complete oxidative onioation of all six P-P bonds in P4 to yield highly reactive and versatile trications [P(LN)3]3+.

20.
Dalton Trans ; 51(15): 5977-5982, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35348153

ABSTRACT

This manuscript shows that chalcogen bonding (ChB) interactions are enhanced by the coordination of the chalcogen atom to metal centers as evidenced using DFT calculations (PBE0-D3/def2-TZVP level of theory). X-ray structures retrieved from the Cambridge Structural Database (CSD) are used to support the enhanced ability of Se and Te-atoms coordinated to transition metals to participate in ChBs, eliminating the necessity to use strong electron-withdrawing groups bonded to the Ch atom. Orbital analysis performed using the natural bond orbital (NBO) technique discloses a large LP → σ* contribution, especially for anionic electron donors. In one example, the new σ-hole that is generated upon complexation (opposite to the Ch-M bond) plays a crucial role in the solid state, promoting the formation of infinite 1D polymers.

SELECTION OF CITATIONS
SEARCH DETAIL
...