Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Clin Invest ; 37(5): 407-15, 2007 May.
Article in English | MEDLINE | ID: mdl-17461987

ABSTRACT

BACKGROUND: Receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPG) are well-documented potent regulators of osteoclast development. However, their effects in mature bone cells and in organ cultures have not been well studied. It is uncertain whether their activities in different experimental models are comparable. MATERIALS AND METHODS: RANKL and OPG were evaluated for their activities in mouse calvarial organ cultures, mouse bone marrow cultures, isolated rat mature osteoclast assays and rat primary osteoblast cultures. Results In murine calvarial organ culture, both muRANKL (> or = 10 ng mL(-1)) and rRANKL (> or = 100 ng mL(-1)) significantly stimulated (45)Ca release, while OPG (> or = 50 ng mL(-1)) was an inhibitor of bone resorption. Meanwhile, [(3)H]-thymidine incorporation in this assay was also modulated (indicating proliferation increases in the osteoblast lineage of cells) although these peptides had no direct effect on [(3)H]-thymidine incorporation in isolated osteoblast assays. In mouse bone marrow cultures, muRANKL (> or = 1 ng mL(-1)) and rRANKL (> or = 5 ng mL(-1)) significantly stimulated osteoclastogenesis. The number of nuclei per osteoclast was also significantly increased. OPG strongly inhibited this index, with over 90% suppression at 1 ng mL(-1). Both muRANKL (10 ng mL(-1)) and rRANKL (100 ng mL(-1)) stimulated, while OPG (10 ng mL(-1)) inhibited osteoclast activity in isolated mature osteoclast assays. CONCLUSION: The current study demonstrated that bone resorption modulated by RANKL and OPG, in murine calvarial organ culture, leads to changes in osteoblast proliferation, suggesting a feedback mechanism from osteoclasts to osteoblasts. In addition, it was found that RANKL and OPG have more potent effects on osteoclastogenesis than on the activity of mature osteoclasts.


Subject(s)
Bone Development/physiology , Cell Differentiation/physiology , Osteoblasts/metabolism , Osteoclasts/physiology , Animals , Cells, Cultured , Mice , Organ Culture Techniques , Osteoprotegerin , RANK Ligand , Rats
2.
Am J Physiol Endocrinol Metab ; 292(1): E117-22, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16912056

ABSTRACT

Several hormones that regulate nutritional status also impact on bone metabolism. Preptin is a recently isolated 34-amino acid peptide hormone that is cosecreted with insulin and amylin from the pancreatic beta-cells. Preptin corresponds to Asp(69)-Leu(102) of pro-IGF-II. Increased circulating levels of a pro-IGF-II peptide complexed with IGF-binding protein-2 have been implicated in the high bone mass phenotype observed in patients with chronic hepatitis C infection. We have assessed preptin's activities on bone. Preptin dose-dependently stimulated the proliferation (cell number and DNA synthesis) of primary fetal rat osteoblasts and osteoblast-like cell lines at periphysiological concentrations (>10(-11) M). In addition, thymidine incorporation was stimulated in murine neonatal calvarial organ culture, likely reflecting the proliferation of cells from the osteoblast lineage. Preptin did not affect bone resorption in this model. Preptin induced phosphorylation of p42/p44 MAP kinases in osteoblastic cells in a dose-dependent manner (10(-8)-10(-10) M), and its proliferative effects on primary osteoblasts were blocked by MAP kinase kinase inhibitors. Preptin also reduced osteoblast apoptosis induced by serum deprivation, reducing the number of apoptotic cells by >20%. In vivo administration of preptin increased bone area and mineralizing surface in adult mice. These data demonstrate that preptin, which is cosecreted from the pancreatic beta-cell with amylin and insulin, is anabolic to bone and may contribute to the preservation of bone mass observed in hyperinsulinemic states such as obesity.


Subject(s)
Insulin-Like Growth Factor II/pharmacology , Insulin-Secreting Cells/metabolism , Osteogenesis/drug effects , Peptide Fragments/pharmacology , Peptides/pharmacology , Animals , Bone Development/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Humans , Insulin-Like Growth Factor II/metabolism , Male , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoclasts/metabolism , Peptide Fragments/metabolism , Peptides/metabolism , Pertussis Toxin/pharmacology , Rats , Receptors, Islet Amyloid Polypeptide , Receptors, Peptide/antagonists & inhibitors , Swiss 3T3 Cells
3.
J Endocrinol ; 175(2): 405-15, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12429038

ABSTRACT

Fat mass is an important determinant of bone density, but the mechanism of this relationship is uncertain. Leptin, as a circulating peptide of adipocyte origin, is a potential contributor to this relationship. Recently it was shown that intracerebroventricular administration of leptin is associated with bone loss, suggesting that obesity should be associated with low bone mass, the opposite of what is actually found. Since leptin originates in the periphery, an examination of its direct effects on bone is necessary to address this major discrepancy. Leptin (>10(-11) m) increased proliferation of isolated fetal rat osteoblasts comparably with IGF-I, and these cells expressed the signalling form of the leptin receptor. In mouse bone marrow cultures, leptin (>or=10(-11) m) inhibited osteoclastogenesis, but it had no effect on bone resorption in two assays of mature osteoclasts. Systemic administration of leptin to adult male mice (20 injections of 43 micro g/day over 4 weeks) reduced bone fragility (increased work to fracture by 27% and displacement to fracture by 21%, P<0.001). Changes in tibial histomorphometry were not statistically significant apart from an increase in growth plate thickness in animals receiving leptin. Leptin stimulated proliferation of isolated chondrocytes, and these cells also expressed the signalling form of the leptin receptor. It is concluded that the direct bone effects of leptin tend to reduce bone fragility and could contribute to the high bone mass and low fracture rates of obesity. When administered systemically, the direct actions of leptin outweigh its centrally mediated effects on bone, the latter possibly being mediated by leptin's regulation of insulin sensitivity.


Subject(s)
Bone and Bones/physiology , Leptin/physiology , Animals , Bone Density/physiology , Bone Marrow/physiology , Cell Division/physiology , Cells, Cultured , Chondrocytes/physiology , Male , Mice , Organ Culture Techniques , Osteoblasts/physiology , Osteoclasts/physiology , Rats , Receptors, Cell Surface/physiology , Receptors, Leptin
4.
Bone ; 29(2): 162-8, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11502478

ABSTRACT

Amylin and calcitonin gene-related peptide (CGRP) are homologous 37 amino acid peptides that are found in the circulation. Both peptides belong to the calcitonin family. Similar to calcitonin, amylin and CGRP inhibit osteoclast activity, although they are much less potent than calcitonin. Calcitonin is known to act on the latter stages of osteoclast development, inhibiting the fusion of committed preosteoclasts to form mature multinucleated cells; however, whether or not calcitonin acts earlier in the formation of the precursor osteoclasts is controversial. The question of osteoclast development has never been examined with respect to amylin and CGRP. These issues are addressed in the present study. We studied the effects of calcitonin (salmon and rat), amylin (human and rat), and CGRP (human and rat) in mouse bone marrow cultures stimulated to generate osteoclasts using 1alpha,25-dihydroxyvitamin D3. Calcitonin dose-dependently decreased the numbers of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells as well as TRAP-positive mono-/binucleated cells at concentrations >10(-13) mol/L. Amylin and CGRP showed similar effects at concentrations >10(-9) mol/L. In addition, calcitonin substantially reduced the ratio of TRAP-positive multinucleated to mono-binucleated cells, indicating an effect on fusion of osteoclast precursors. The present data establish that this family of peptides not only acts on mature osteoclasts but also inhibits their development in bone marrow cultures. This activity is shared by amylin and CGRP. The much greater potency of calcitonin than amylin and CGRP is consistent with the action of these peptides being mediated by calcitonin receptors.


Subject(s)
Amyloid/pharmacology , Calcitonin Gene-Related Peptide/pharmacology , Calcitonin/pharmacology , Osteoclasts/drug effects , Animals , Autoradiography , Humans , Islet Amyloid Polypeptide , Male , Mice , Osteoclasts/cytology , Rats
5.
J Endocrinol ; 170(1): 251-7, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11431158

ABSTRACT

Adrenomedullin is a 52-amino acid peptide first described in a human phaeochromocytoma but since been found to be present in many tissues, including the vascular system and bone. Because of its structural similarity to amylin and calcitonin gene-related peptide, both of which have actions on bone cells, we have previously assessed the effects of adrenomedullin on the skeleton, and found that it increases osteoblast proliferation in vitro and bone formation following local injection in vivo. The present study carries this work forward by assessing the effects on bone of the systemic administration of a fragment of this peptide lacking the structural requirements for vasodilator activity. Two groups of 20 adult male mice received 20 injections of human adrenomedullin(27-52) 8.1 microg or vehicle over a 4-week period and bone histomorphometry and strength were assessed. In the tibia, adrenomedullin(27-52) produced increases in the indices of osteoblast activity, osteoid perimeter and osteoblast perimeter (P<0.05 for both using Student's t-test). Osteoclast perimeter was not affected. There was a 21% increase in cortical width and a 45% increase in trabecular bone volume in animals treated with adrenomedullin(27-52) (P<0.002 for both). Assessment of bone strength by three-point bending of the humerus showed both the maximal force and the displacement to the point of failure were increased in the animals treated with adrenomedullin(27-52) (P<0.03 for both). There was also a significant increase in the thickness of the epiphyseal growth plate. No adverse effects of the treatment were noted. It is concluded that adrenomedullin(27-52) acts as an anabolic agent on bone. These findings may be relevant to the normal regulation of bone mass and to the design of agents for the treatment of osteoporosis.


Subject(s)
Bone and Bones/drug effects , Peptide Fragments/pharmacology , Adrenomedullin , Animals , Biomechanical Phenomena , Body Composition/drug effects , Bone and Bones/anatomy & histology , Bone and Bones/physiology , Humerus/drug effects , Humerus/physiology , Male , Mice , Osteoblasts/physiology , Statistics, Nonparametric , Tibia/anatomy & histology , Tibia/drug effects , Tibia/physiology
6.
Am J Physiol Endocrinol Metab ; 279(4): E730-5, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11001752

ABSTRACT

Amylin increases bone mass when administered systemically to mice. However, because of its size, the full peptide is not an ideal candidate for the therapy of osteoporosis. The fragment, amylin-(1---8), stimulates osteoblast proliferation in vitro, although it is without effect on carbohydrate metabolism. The present study assessed the effects of daily administration of this peptide on sexually mature male mice for 4 wk. Amylin-(1---8) almost doubled histomorphometric indices of osteoblast activity but did not change measures of bone resorption. Trabecular bone volume increased by 36% as a result of increases in both trabecular number and trabecular thickness, and tibial cortical width increased by 8%. On three-point bending tests of bone strength, displacement to fracture was increased by amylin-(1---8), from 0.302 +/- 0.013 to 0.351 +/- 0. 017 mm (P = 0.02). In a separate experiment using dynamic histomorphometry with bone-seeking fluorochrome labels, amylin-(1---8) was administered by local injection over the calvariae of female mice. Amylin-(1---8) (40 nM) increased the double-labeled surface threefold. The effect was dose dependent from 0.4 to 40 nM and was greater than that of an equimolar dose of human parathyroid hormone-(1---34) [hPTH-(1---34)]. Mineral apposition rate was increased by 40 nM amylin-(1---8) but not by hPTH-(1---34). Amylin-(1---8) thus has significant anabolic effects in vivo, suggesting that this peptide or analogs of it should be further evaluated as potential therapies for osteoporosis.


Subject(s)
Amyloid/administration & dosage , Bone Density/drug effects , Bone and Bones/drug effects , Peptide Fragments/administration & dosage , Amyloid/chemistry , Animals , Body Weight/drug effects , Bone and Bones/anatomy & histology , Bone and Bones/metabolism , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Fluorescent Dyes , Humans , Injections, Subcutaneous , Islet Amyloid Polypeptide , Male , Mice , Osteoblasts/drug effects , Peptide Fragments/chemistry , Rats , Skull/drug effects , Teriparatide/pharmacology , Tibia/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...