Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eng Anal Bound Elem ; 138: 108-117, 2022 May.
Article in English | MEDLINE | ID: mdl-35153388

ABSTRACT

The epidemiological aspects of the viral dynamic of the SARS-CoV-2 have become increasingly crucial due to major questions and uncertainties around the unaddressed issues of how corpse burial or the disposal of contaminated waste impacts nearby soil and groundwater. Here, a theoretical framework base on a meshless algorithm using the moving least squares (MLS) shape functions is adopted for solving the time-fractional model of the viral diffusion in and across three different environments including water, tissue, and soil. Our computations predict that by considering the α (order of fractional derivative) best fit to experimental data, the virus has a traveling distance of 1 m m in water after 22, regardless of the source of contamination (e.g., from tissue or soil). The outcomes and extrapolations of our study are fundamental for providing valuable benchmarks for future experimentation on this topic and ultimately for the accurate description of viral spread across different environments. In addition to COVID-19 relief efforts, our methodology can be adapted for a wide range of applications such as studying virus ecology and genomic reservoirs in freshwater and marine environments.

2.
Channels (Austin) ; 11(3): 209-223, 2017 May 04.
Article in English | MEDLINE | ID: mdl-27753526

ABSTRACT

Gating of mechanosensitive (MS) channels is driven by a hierarchical cascade of movements and deformations of transmembrane helices in response to bilayer tension. Determining the intrinsic mechanical properties of the individual transmembrane helices is therefore central to understanding the intricacies of the gating mechanism of MS channels. We used a constant-force steered molecular dynamics (SMD) approach to perform unidirectional pulling tests on all the helices of MscL in M. tuberculosis and E. coli homologs. Using this method, we could overcome the issues encountered with the commonly used constant-velocity SMD simulations, such as low mechanical stability of the helix during stretching and high dependency of the elastic properties on the pulling rate. We estimated Young's moduli of the α-helices of MscL to vary between 0.2 and 12.5 GPa with TM2 helix being the stiffest. We also studied the effect of water on the properties of the pore-lining TM1 helix. In the absence of water, this helix exhibited a much stiffer response. By monitoring the number of hydrogen bonds, it appears that water acts like a 'lubricant' (softener) during TM1 helix elongation. These data shed light on another physical aspect underlying hydrophobic gating of MS channels, in particular MscL.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Ion Channels/chemistry , Ion Channels/metabolism , Mechanical Phenomena , Molecular Dynamics Simulation , Nanotechnology , Biomechanical Phenomena , Elasticity , Porosity , Protein Conformation, alpha-Helical
SELECTION OF CITATIONS
SEARCH DETAIL
...