Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36903397

ABSTRACT

The structure and interactions of oxygenated aromatic molecules are of atmospheric interest due to their toxicity and as precursors of aerosols. Here, we present the analysis of 4-methyl-2-nitrophenol (4MNP) using chirped pulse and Fabry-Pérot Fourier transform microwave spectroscopy in combination with quantum chemical calculations. The rotational, centrifugal distortion, and 14N nuclear quadrupole coupling constants of the lowest-energy conformer of 4MNP were determined as well as the barrier to methyl internal rotation. The latter has a value of 106.4456(8) cm-1, significantly larger than those from related molecules with only one hydroxyl or nitro substituent in the same para or meta positions, respectively, as 4MNP. Our results serve as a basis to understand the interactions of 4MNP with atmospheric molecules and the influence of the electronic environment on methyl internal rotation barrier heights.

2.
J Phys Chem Lett ; 13(40): 9510-9516, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36200782

ABSTRACT

Non-covalent interactions between aromatic molecules and water are fundamental in many chemical and biological processes, and their accurate description is essential to understand molecular relative configurations. Here we present the rotational spectroscopy study of the water complexes of the polycyclic aromatic hydrocarbon 1,4-naphthoquinone (1,4-NQ). In 1,4-NQ-(H2O)1,2, water molecules bind through O-H···O and C-H···O hydrogen bonds and are located on the plane of 1,4-NQ. For 1,4-NQ-(H2O)3, in-plane and above-plane water configurations are observed exhibiting O-H···O, C-H···O, and lone pair···π-hole interactions. The observation of different water arrangements for 1,4-NQ-(H2O)3 allows benchmarking theoretical methods and shows that they have great difficulty in predicting energy orderings due to the strong competition of C-H···O binding with π and π-hole interactions. This study provides important insight into water interactions with aromatic systems and the challenges in their modeling.


Subject(s)
Naphthoquinones , Water , Hydrogen Bonding , Molecular Conformation , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...