Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 128(17): 3329-3338, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38652167

ABSTRACT

We present a systematic experimental analysis of the 1:1 complex of 2,7-diazaindole (27DAI) with water in the gas phase. The complex was characterized by using two-color-resonant two-photon ionization (R2PI), laser-induced fluorescence (LIF), single vibronic level fluorescence (SVLF), and photoionization efficiency (PIE) spectroscopic methods. The 000 band of the S1←S0 electronic transition of the 27DAI-H2O complex was observed at 33,074 cm-1, largely red-shifted by 836 cm-1 compared to that of the bare 27DAI. From the R2PI spectrum, the detected modes at 141 (ν'Tx), 169 (ν'Ty), and 194 (ν'Ry) cm-1 were identified as the internal motions of the H2O molecule in the complex. However, these modes were detected at 115 (ν″Tx), 152 (ν″Ty), and 190 (ν″Ry) cm-1 in the ground state, which suggested a stronger hydrogen bonding interaction in the photo-excited state. The structural determination was aided by the detection of νNH and νOH values in the ground and excited state complexes using the FDIR and IDIR spectroscopies. The detection of νNH at 3414 and νOH at 3447 cm-1 in 27DAI-H2O has shown an excellent correlation with the most stable structure consisting of N(1)-H···O and OH···N(7) hydrogen-bonded bridging water molecule in the ground state. The structure of the complex in the electronic excited state (S1) was confirmed by the corresponding bands at 3210 (νNH) and 3265 cm-1 (νOH). The IR-UV hole-burning spectroscopy confirmed the presence of only one isomer in the molecular beam. The ionization energy (IE) of the 27DAI-H2O complex was obtained as 8.789 ± 0.002 eV, which was significantly higher than the 7AI-H2O complex. The higher IE values of N-rich molecules suggest a higher resistivity of such molecules against photodamage. The obtained structure of the 27DAI-H2O complex has explicitly shown the formation of a cyclic one-solvent bridge incorporating N(1)-H···O and O-H···N(7) hydrogen bonds upon microsolvation. The lower excitation and higher ionization energies of the 27DAI-H2O complex compared to 7AI-H2O established higher stabilization of N-rich molecules. The solvent clusters forming a linear bridge between the hydrogen/proton acceptor and donor sites in the complex can be considered as a stepping stone to investigate the photoinduced deactivation mechanisms in nitrogen containing biologically relevant molecules.

2.
Chemphyschem ; 24(23): e202300270, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37671972

ABSTRACT

Excited state hydrogen (ESHT) and proton (ESPT) transfer reaction pathways in the three and four solvent clusters of 6-azaindole (6AI-S3,4 ) and 2,6-diazaindole (26DAI-S3,4 )(S=H2 O, NH3 ) were computationally investigated to understand the fate of photo-excited biomolecules. The ESHT energy barriers in (H2 O)3 complexes (39.6-41.3 kJmol-1 ) were decreased in (H2 O)4 complexes (23.1-20.2 kJmol-1 ). Lengthening the solvent chain lowered the barrier because of the relaxed transition states geometries with reduced angular strains. Replacing the water molecule with ammonia drastically decreased the energy barriers to 21.4-21.3 kJmol-1 in (NH3 )3 complexes and 8.1-9.5 kJ mol-1 in (NH3 )4 complexes. The transition states were identified as Ha atom attached to the first solvent molecule. The formation of stronger hydrogen bonds in (NH3 )3,4 complexes resulted in facile ESHT reaction than that in the (H2 O)3,4 complexes. The ESPT energy barriers in 6AI-S3,4 and 26DAI-S3,4 were found to range between 40-73 kJmol-1 . The above values were significantly higher than that of the ESHT processes and hence are considered as a minor channel in the process. The effect of N(2) insertion was explored for the very first time in the isolated solvent clusters using local vibrational mode analysis. In DAI-S4 , the higher Ka (Ha ⋯Sa ) values depicted the increased photoacidity of the N(1)-Ha group which may facilitate the hydrogen transfer reaction. However, the increased N(6)⋯Hb bond length elevated the reaction barriers. Therefore, in the ESHT reaction channel, the co-existence of two competing factors led to a marginal/no change in the overall energy barriers due to the N(2) insertion. In the ESPT reaction pathway, the energy barriers showed notable increase upon N(2) insertion because of the increased N(6)⋯Hb bond length.

3.
Phys Chem Chem Phys ; 25(39): 26679-26691, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37772686

ABSTRACT

We report the first gas phase comprehensive study of the electronic spectroscopy of 2,7-diazaindole molecule in the ground and excited states. Single vibronic level fluorescence spectroscopy (SVLF) was performed to determine the ground state vibrations of the molecule, which depicted a large Franck-Condon activity beyond 2600 cm-1. For the excited state characterization, laser-induced fluorescence (LIF) and two-color resonant two-photon ionization spectroscopy (2C-R2PI) were performed. The band origin (000) for S1 ← S0 transition appeared at 33910 ± 1 cm-1 which was red shifted by 718 cm-1 and 1322 cm-1 compared to that of 7-azaindole and indole respectively. The Franck-Condon active vibrational modes in the spectra were seen till the (000) + 1600 cm-1 region. The IR-UV hole burning spectroscopy confirmed the absence of any other isomeric species in the molecular beam. The ionization energy (IE) of the molecule was measured as 8.921 ± 0.001 eV, recorded using photoionization efficiency spectroscopy. The above IE value was significantly higher than that of the related indole derivatives, suggesting the higher photostability of the 27DAI molecule due to N(2) insertion. The ground and excited state N-H stretching frequencies of the molecule were determined using fluorescence-dip infrared spectroscopy (FDIR) and resonant ion-dip infrared spectroscopy (IDIR), and the values are 3523 and 3467 cm-1, respectively. The lower value of νNH in the electronic excited state implied the increased photoacidity of the group. A comparative analysis of the experimental LIF/2C-R2PI spectra was done against Franck-Condon simulated spectra at three different levels of theory. The vibrational frequencies calculated at B3LYP-D4/def2-TZVPP showed the most accurate prediction in comparison with the experimentally detected symmetric modes in the ground state. However, in the excited state, the lower energy asymmetric modes simulated at the B3LYP/def-SVP level of theory provided the best agreement with the experiment. This is most probably due to the distortion observed at the pyrazolyl ring leading to the appearance of asymmetric vibrational modes. The above study highlights the possibility to appropriately tune the excitation wavelengths as well as alter the photostability of the organic chromophores via additional N-insertion in the molecular systems.

4.
Phys Chem Chem Phys ; 25(19): 13498-13507, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37132295

ABSTRACT

We have experimentally demonstrated conclusive evidence of solvent-to-chromophore excited-state proton transfer (ESPT) as a deactivation mechanism in a binary complex isolated in the gas phase. This was achieved by determining the energy barrier of the ESPT processes, qualitatively analysing the quantum tunnelling rates and evaluating the kinetic isotope effect. The 1 : 1 complexes of 2,2'-pyridylbenzimidazole (PBI) with H2O, D2O and NH3, produced in supersonic jet-cooled molecular beam, were characterised spectroscopically. The vibrational frequencies of the complexes in the S1 electronic state were recorded using a resonant two-colour two-photon ionization method coupled to a time-of-flight mass spectrometer set-up. In PBI-H2O, the ESPT energy barrier of 431 ± 10 cm-1 was measured using UV-UV hole-burning spectroscopy. The exact reaction pathway was experimentally determined via the isotopic substitution of the tunnelling-proton (in PBI-D2O) and by increasing the width of the proton-transfer barrier (in PBI-NH3). In both cases, the energy barriers were significantly increased to >1030 cm-1 in PBI-D2O and to >868 cm-1 in PBI-NH3. The heavy atom in PBI-D2O decreased the zero-point energy in the S1 state significantly, resulting in elevation of the energy barrier. Secondly, the solvent-to-chromophore proton tunnelling was found to decrease drastically upon deuterium substitution. In the PBI-NH3 complex, the solvent molecule formed preferential hydrogen bonding with the acidic (PBI)N-H group. This led to the formation of weak hydrogen bonding between ammonia and the pyridyl-N atom, thus increasing the proton-transfer barrier width (H2N-H⋯Npyridyl(PBI)). The above resulted in an increased barrier height and a decreased quantum tunnelling rate in the excited state. The experimental investigation, aided by computational investigations, demonstrated conclusive evidence of a novel deactivation channel for an electronically excited biologically relevant system. The variation observed for the energy barrier and the quantum tunnelling rate by substituting NH3 in place of H2O can be directly correlated with the drastically different photochemical and photophysical reactions of biomolecules under various microenvironments.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 265: 120386, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34560582

ABSTRACT

The photoinduced tautomerization reactions via hydrogen atom transfer in the excited electronic state (ESHT) have been computationally investigated in 2,7-diazaindole (27DAI) - (H2O)1-3 and 27DAI - (NH3)1-3 isolated clusters to understand the role of various solvent wires. Two competing ESHT reaction pathways originating from the N(1)-H group to the neighbouring N(7) (R(1H-Sn-7H)) and N(2) (R(1H-Sn-2H)) atoms were rigorously examined for each system. Both one- and two-dimensional potential energy surfaces have been calculated in the excited state to investigate the pathways. The R(1H-Sn-7H) was found to be the dominant route with reaction barriers ranging from 26-40 kJmol-1 for water clusters, and 14-26 kJmol-1 for ammonia clusters. The barrier heights for ammonia clusters were found to be nearly half of the that observed for the water systems. The lengthening of the solvent chain up to two molecules resulted in a drastic decrease in the barrier heights for R(1H-Sn-7H). The barriers of the competing reaction channel R(1H-Sn-2H) were found to be significantly higher (31-127 kJmol-1) but were observed to be decreasing with the lengthening of the solvent wire as in the R(1H-Sn-7H) pathway. In both the reactions, the angle strain present in the transition state structures was dependent upon the solvent chain's length and was most likely the governing factor for the barrier heights in each solvent cluster. The results have also affirmed that the ammonia molecule is a better candidate for hydrogen transfer than water because of its higher gas-phase basicity. The results delineated from this investigation can pave the way to unravel the excited-state hydrogen atom transfer pathways in novel N-H bearing molecules.


Subject(s)
Hydrogen , Water , Ammonia , Hydrogen Bonding , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...