Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Genet ; 56(4): 721-731, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622339

ABSTRACT

Coffea arabica, an allotetraploid hybrid of Coffea eugenioides and Coffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid C. arabica accession and modern representatives of its diploid progenitors, C. eugenioides and C. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000-610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed with C. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding of C. arabica.


Subject(s)
Coffea , Coffea/genetics , Coffee , Genome, Plant/genetics , Metagenomics , Plant Breeding
2.
Heredity (Edinb) ; 130(3): 145-153, 2023 03.
Article in English | MEDLINE | ID: mdl-36596880

ABSTRACT

Degradation and regeneration of tropical forests can strongly affect gene flow in understorey species, resulting in genetic erosion and changes in genetic structure. Yet, these processes remain poorly studied in tropical Africa. Coffea canephora is an economically important species, found in the understorey of tropical rainforests of Central and West Africa, and the genetic diversity harboured in its wild populations is vital for sustainable coffee production worldwide. Here, we aimed to quantify genetic diversity, genetic structure, and pedigree relations in wild C. canephora populations, and we investigated associations between these descriptors and forest disturbance and regeneration. Therefore, we sampled 256 C. canephora individuals within 24 plots across three forest categories in Yangambi (DR Congo), and used genotyping-by-sequencing to identify 18,894 SNPs. Overall, we found high genetic diversity, and no evidence of genetic erosion in C. canephora in disturbed old-growth forest, as compared to undisturbed old-growth forest. In addition, an overall heterozygosity excess was found in all populations, which was expected for a self-incompatible species. Genetic structure was mainly a result of isolation-by-distance, reflecting geographical location, with low to moderate relatedness at finer scales. Populations in regrowth forest had lower allelic richness than populations in old-growth forest and were characterised by a lower inter-individual relatedness and a lack of isolation-by-distance, suggesting that they originated from different neighbouring populations and were subject to founder effects. Wild Robusta coffee populations in the study area still harbour high levels of genetic diversity, yet careful monitoring of their response to ongoing forest degradation remains required.


Subject(s)
Coffea , Humans , Coffea/genetics , Coffee , Democratic Republic of the Congo , Forests , Genetic Variation
3.
Mol Ecol ; 32(10): 2484-2503, 2023 05.
Article in English | MEDLINE | ID: mdl-35377502

ABSTRACT

Conventional wisdom states that genetic variation reduces disease levels in plant populations. Nevertheless, crop species have been subject to a gradual loss of genetic variation through selection for specific traits during breeding, thereby increasing their vulnerability to biotic stresses such as pathogens. We explored how genetic variation in Arabica coffee sites in southwestern Ethiopia was related to the incidence of four major fungal diseases. Sixty sites were selected along a gradient of management intensity, ranging from nearly wild to intensively managed coffee stands. We used genotyping-by-sequencing of pooled leaf samples (pool-GBS) derived from 16 individual coffee shrubs in each of the 60 sites to assess the variation in genetic composition (multivariate: reference allele frequency) and genetic diversity (univariate: mean expected heterozygosity) between sites. We found that genetic composition had a clear spatial pattern and that genetic diversity was higher in less managed sites. The incidence of the four fungal diseases was related to the genetic composition of the coffee stands, but in a specific way for each disease. In contrast, genetic diversity was only related to the within-site variation of coffee berry disease, but not to the mean incidence of any of the four diseases across sites. Given that fungal diseases are major challenges of Arabica coffee in its native range, our findings that genetic composition of coffee sites impacted the major fungal diseases may serve as baseline information to study the molecular basis of disease resistance in coffee. Overall, our study illustrates the need to consider both host genetic composition and genetic diversity when investigating the genetic basis for variation in disease levels.


Subject(s)
Coffea , Mycoses , Coffea/genetics , Plant Breeding , Ethiopia
4.
Genet Resour Crop Evol ; 69(7): 2515-2534, 2022.
Article in English | MEDLINE | ID: mdl-36017134

ABSTRACT

Collection and storage of crop wild relative (CWR) germplasm is crucial for preserving species genetic diversity and crop improvement. Nevertheless, much of the genetic variation of CWRs is absent in ex situ collections and detailed passport data are often lacking. Here, we focussed on Musa balbisiana, one of the two main progenitor species of many banana cultivars. We investigated the genetic structure of M. balbisiana across its distribution range using microsatellite markers. Accessions stored at the International Musa Germplasm Transit Centre (ITC) ex situ collection were compared with plant material collected from multiple countries and home gardens from Vietnam. Genetic structure analyses revealed that accessions could be divided into three main clusters. Vietnamese and Chinese populations were assigned to a first and second cluster respectively. A third cluster consisted of ITC and home garden accessions. Samples from Papua New Guinea were allocated to the cluster with Chinese populations but were assigned to a separate fourth cluster if the number of allowed clusters was set higher. Only one ITC accession grouped with native M. balbisiana populations and one group of ITC accessions was nearly genetically identical to home garden samples. This questioned their wild status, including accessions used as reference for wild M. balbisiana. Moreover, most ITC accessions and home garden samples were genetically distinct from wild populations. Our results highlight that additional germplasm should be collected from the native distribution range, especially from Northeast India, Myanmar, China, and the Philippines and stored for ex situ conservation at the ITC. The lack of passport data for many M. balbisiana accessions also complicates the interpretation of genetic information in relation to cultivation and historical dispersal routes. Supplementary Information: The online version contains supplementary material available at 10.1007/s10722-022-01389-4.

5.
Am J Bot ; 108(12): 2425-2434, 2021 12.
Article in English | MEDLINE | ID: mdl-34634128

ABSTRACT

PREMISE: Many cultivated coffee varieties descend from Coffea canephora, commonly known as Robusta coffee. The Congo Basin has a century-long history of Robusta coffee cultivation and breeding, and is hypothesized to be the region of origin of many of the cultivated Robusta varieties. Since little is known about the genetic composition of C. canephora in this region, we assessed the genetic diversity of wild and cultivated C. canephora shrubs in the Democratic Republic of the Congo. METHODS: Using 18 microsatellite markers, we studied the genetic composition of wild and backyard-grown C. canephora shrubs in the Tshopo and Ituri provinces and multiple accessions from the INERA Yangambi Coffee Collection. We assessed genetic clustering patterns, genetic diversity, and genetic differentiation between populations. RESULTS: Genetic differentiation was relatively strong between wild and cultivated C. canephora shrubs, and both gene pools harbored multiple unique alleles. Strong genetic differentiation was also observed between wild populations. The level of genetic diversity in wild populations was similar to that of the INERA Yangambi Coffee Collection, but local wild genotypes were mostly missing from that collection. Shrubs grown in the backyards were genetically similar to the breeding material from INERA Yangambi. CONCLUSIONS: Most C. canephora that is grown in local backyards originated from INERA breeding programs, while a few shrubs were obtained directly from surrounding forests. The INERA Yangambi Coffee Collection could benefit from an enrichment with local wild genotypes to increase the genetic resources available for breeding purposes and to support ex situ conservation.


Subject(s)
Coffea , Coffea/genetics , Democratic Republic of the Congo , Genetic Markers , Genetic Variation
6.
PLoS One ; 16(6): e0253255, 2021.
Article in English | MEDLINE | ID: mdl-34161368

ABSTRACT

Crop wild relatives (CWR) are an indispensable source of alleles to improve desired traits in related crops. While knowledge on the genetic diversity of CWR can facilitate breeding and conservation strategies, it has poorly been assessed. Cultivated bananas are a major part of the diet and income of hundreds of millions of people and can be considered as one of the most important fruits worldwide. Here, we assessed the genetic diversity and structure of Musa balbisiana, an important CWR of plantains, dessert and cooking bananas. Musa balbisiana has its origin in subtropical and tropical broadleaf forests of northern Indo-Burma. This includes a large part of northern Vietnam where until now, no populations have been sampled. We screened the genetic variation and structure present within and between 17 Vietnamese populations and six from China using 18 polymorphic SSR markers. Relatively high variation was found in populations from China and central Vietnam. Populations from northern Vietnam showed varying levels of genetic variation, with low variation in populations near the Red River. Low genetic variation was found in populations of southern Vietnam. Analyses of population structure revealed that populations of northern Vietnam formed a distinct genetic cluster from populations sampled in China. Together with populations of central Vietnam, populations from northern Vietnam could be subdivided into five clusters, likely caused by mountain ranges and connected river systems. We propose that populations sampled in central Vietnam and on the western side of the Hoang Lien Son mountain range in northern Vietnam belong to the native distribution area and should be prioritised for conservation. Southern range edge populations in central Vietnam had especially high genetic diversity, with a high number of unique alleles and might be connected with core populations in northern Laos and southwest China. Southern Vietnamese populations are considered imported and not native.


Subject(s)
Alleles , Conservation of Natural Resources , Genetic Variation , Genome, Plant , Musa/genetics , Microsatellite Repeats , Vietnam
SELECTION OF CITATIONS
SEARCH DETAIL
...