Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitol Res ; 121(9): 2503-2516, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35895112

ABSTRACT

The study goal was to examine the effects of sand and mud on the propagation of Myxobolus cerebralis, the whirling disease agent, in four mitochondrial 16S ribosomal DNA lineages (I, III, V, VI) of its oligochaete host, Tubifex tubifex (Tt). In all the lineage groups held continuously in either substrate (non-shifted) or transferred from sand to mud (shifted), substrate influenced parasite proliferation only in lineage III. Sporogenesis and release of triactinomyxon spores (TAMs) were more prevalent in lineage III Tt in mud compared to sand. Low-infection prevalence and lack of parasite development in lineage I is associated with the greater number of resistant worms and were not affected by substrate type. Substrate did not impact Tt from lineages V and VI that failed to develop any parasite stages in either substrate even after shifting from sand to mud. The relationship between the microbial community in the substrate and parasite proliferation in lineage III was described but not analyzed due to small sample size. Substrate-associated bacteria were hypothesized as essential dietary source for the oligochaete host feeding selectively on fine (mud)-microflora. Progeny was produced by all lineage groups shifted to mud with disparate survival profiles in lineage V and VI and high mortalities in lineage III. Our study demonstrates that substrate type can alter parasite proliferation in lineage III. Conversely, parasite development and infectivity were not altered in lineage V and VI that are refractory to the parasite nor among the more resistant phenotypes (I), regardless of substrate type.


Subject(s)
Fish Diseases , Myxobolus , Oligochaeta , Animals , Cell Proliferation , DNA, Mitochondrial , Eukaryota , Fish Diseases/parasitology , Myxobolus/genetics , Oligochaeta/parasitology , Sand , Spores
2.
Aquat Toxicol ; 170: 152-161, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26655659

ABSTRACT

A common approach used to assess environmental impacts in aquatic environments is to measure indicators of stress (biomarkers) and condition of fish within ecosystems. Particularly in estuarine ecosystems with multiple stressors, it is often desirable to quantify a suite of biological endpoints that (1) reflect fish condition at several levels of biological organization and time scales and (2) are sensitive to a range of environmental stressors. However, established methods of preservation and processing of fish for specific endpoints are often incompatible. Here, we developed a novel flash-freezing approach for assessing the health of a small, sensitive fish, the endangered Delta Smelt (Hypomesus transpacificus) after collections from the San Francisco Estuary (SFE). We assess whether flash-freezing the entire fish ensures effective preservation of multiple tissues for subsequent biomarker analyses by comparing measurements of fresh to frozen tissue. Tissues included brain, gill, and liver for enzyme activity, kidney and spleen for pathogens, and gills, liver, and gonads for histopathology and reproduction. Although flash-freezing in liquid nitrogen altered the length, weight, and condition factor of Delta Smelt, the percent changes were small (<1.5%). Histological analyses of the cellular morphology of gills, liver, and gonads were similar between both methods. Freezing artefacts were observed in ovaries, but did not hinder the identification and interpretation of cell types and oocyte stages. Freezing did not alter bacterial isolation or the activities of ethoxyresorufin-0-deethylase (EROD) or acetylcholinesterase (AChE), but had a small, negative influence on sodium potassium adenosine triphosphatase (ATPase) activity. Thus, flash-freezing in the field is a versatile preservation method for Delta Smelt, allowing for multiple tissue collections and bioassays from an individual tiny fish exposed to a wide range of natural and anthropogenic stressors. Similar methodology may be applicable to other species for which a range of biological endpoints and histopathology data are needed.


Subject(s)
Freezing , Osmeriformes/metabolism , Acetylcholinesterase/metabolism , Animals , Biomarkers/metabolism , Brain/enzymology , Cytochrome P-450 CYP1A1/metabolism , Gills/enzymology , Gills/pathology , Gonads/pathology , Liver/pathology , Oocytes/metabolism , Oocytes/pathology , Osmeriformes/growth & development , Sodium-Potassium-Exchanging ATPase/metabolism
3.
Sci Rep ; 5: 14340, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26399762

ABSTRACT

The ubiquity of anthropogenic debris in hundreds of species of wildlife and the toxicity of chemicals associated with it has begun to raise concerns regarding the presence of anthropogenic debris in seafood. We assessed the presence of anthropogenic debris in fishes and shellfish on sale for human consumption. We sampled from markets in Makassar, Indonesia, and from California, USA. All fish and shellfish were identified to species where possible. Anthropogenic debris was extracted from the digestive tracts of fish and whole shellfish using a 10% KOH solution and quantified under a dissecting microscope. In Indonesia, anthropogenic debris was found in 28% of individual fish and in 55% of all species. Similarly, in the USA, anthropogenic debris was found in 25% of individual fish and in 67% of all species. Anthropogenic debris was also found in 33% of individual shellfish sampled. All of the anthropogenic debris recovered from fish in Indonesia was plastic, whereas anthropogenic debris recovered from fish in the USA was primarily fibers. Variations in debris types likely reflect different sources and waste management strategies between countries. We report some of the first findings of plastic debris in fishes directly sold for human consumption raising concerns regarding human health.


Subject(s)
Food Contamination/analysis , Seafood/analysis , Waste Products/adverse effects , Animals , Bivalvia , Fishes , Humans , Indonesia , Shellfish , United States
4.
Springerplus ; 3: 627, 2014.
Article in English | MEDLINE | ID: mdl-25392797

ABSTRACT

Infections with Streptococcus spp. were observed in Nile tilapia cultured in net cages in Lake Sentani, Papua, Indonesia. Clinical signs included exophthalmia, erratic swimming, ascites in abdominal cavity, and external hemorrhages. Four types of bacterial colonies (SK, K10, P20, and M12) were isolated from the brain, kidney, and eyes. Based on phenotypic and genetic (16S rDNA sequencing) characteristics, the isolates were identified as Streptococcus iniae (SK), Streptococcus agalactiae (K10 and P20) and Lactococcus garvieae (M12). The latter species has not been previously isolated or reported from fish streptococcosis in Indonesia. Intraperitoneal injection of healthy tilapia with the bacterial species caused significant morbidity (70%) within 3 days and 100% mortality at 6 days post injection. Experimental infections and reisolation of the bacteria from morbid and dead fish suggest they are the causative agents of streptococcosis, which rendered high mortality among cage cultured Nile tilapia in Lake Sentani. Our results suggest the need for developing diagnostic tools for accurate identification of the agents of streptococcosis. As tilapia aquaculture continues to expand as a means of food production and livelihood in Indonesia, it becomes crucial to ensure that fish resources are monitored and protected from the adverse effects of infectious diseases.

5.
Springerplus ; 2: 491, 2013.
Article in English | MEDLINE | ID: mdl-24133644

ABSTRACT

Accurate identification of cyanobacteria using traditional morphological taxonomy is challenging due to the magnitude of phenotypic plasticity among natural algal assemblages. In this study, molecular approach was utilized to facilitate the accurate identification of cyanobacteria in the Sacramento-San Joaquin Delta and in Clear Lake in Northern California where recurring blooms have been observed over the past decades. Algal samples were collected from both water bodies in 2011 and the samples containing diverse cyanobacteria as identified by morphological taxonomy were chosen for the molecular analysis. The 16S ribosomal RNA genes (16S rDNA) and the adjacent internal transcribed spacer (ITS) regions were amplified by PCR from the mixed algal samples using cyanobacteria generic primers. The obtained sequences were analyzed by similarity search (BLASTN) and phylogenetic analysis (16S rDNA) to differentiate species sharing significantly similar sequences. A total of 185 plasmid clones were obtained of which 77 were successfully identified to the species level: Aphanizomenon flos-aquae, Dolichospermum lemmermannii (taxonomic synonym: Anabaena lemmermannii), Limnoraphis robusta (taxonomic synonym: Lyngbya hieronymusii f. robusta) and Microcystis aeruginosa. To date, Dolichospermum and Limnoraphis found in Clear Lake have only been identified to the genus lavel by microscopy. During the course of this study, morphological identification and DNA barcoding confirmed A. flos-aquae as the predominant cyanobacterium in the Sacramento-San Joaquin Delta indicating a shift from M. aeruginosa that have dominated the blooms in the past decade. Lastly, the species-specific identification of Limnoraphis robusta in Clear Lake is another significant finding as this cyanobacterium has, thus far, only been reported in Lake Atitlan blooms in Guatemala.

6.
Springerplus ; 2: 420, 2013.
Article in English | MEDLINE | ID: mdl-24024104

ABSTRACT

Myxozoan spores were observed in yellowfin goby Acanthogobius flavimanus collected from Suisun Marsh, San Francisco Estuary (SFE). Although histopathological changes associated with the parasite were not observed, the spores formed plasmodia that partially blocked the gastric and intestinal mucosa and gut lumen and may affect the perfomance and survival of the yellowfin goby. Morphological features of the spores resembled Henneguya sp. and molecular analysis of the 18S ribosomal DNA (Domain III) confirmed close similarity to H. rhinogobii and H. pseudorhinogobii isolated from the Japanese freshwater goby. The yellowfin goby myxozoan however, is likely an undescribed species based on phylogenetic analysis and morphologic features. Detailed description of vegetative and spore stages are currently lacking for proposal to a new species of Henneguya. A specific PCR test was developed, which confirmed a 100% prevalence of the parasite among randomly collected gobies in group 1 (N = 30) and group 2 (N = 15) at termination of the study at one month in captivity. The myxozoan was also detected from 18 gobies (12%) that died in the first group within two weeks in captivity. Apparently healthy gobies that served as controls did not reveal the presence of the myxozoan by PCR. This study documents the occurrence of a potentially new species of myxozoan in the yellowfin goby and underscores the detection of a parasitic infection in an introduced fish in the SFE. Although the pathogenesis of the myxozoan was not assessed and the prevalence as reported here is restricted to a comparatively small collection site in Suisun slough, the reemergence, identification, and ecological relevance of the parasite on goby populations in the SFE may be investigated in the future using the specific diagnostic tool developed in this study.

7.
J Vet Diagn Invest ; 24(1): 65-73, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22362936

ABSTRACT

Alloherpesviruses affect freshwater and marine fish species. The aim of the current study was to characterize a novel alloherpesvirus in Atlantic cod (Gadus morhua). Samples were processed for histopathology, transmission electron microscopy (TEM), virus isolation, molecular characterization, and in situ hybridization (ISH). Histopathology revealed that the infection was restricted to the gills and that it induced cytomegaly in infected cells. By TEM, numerous viral particles with morphology compatible with a herpesvirus were observed inside the cytomegalic cells. To characterize this new agent, polymerase chain reaction amplified regions of the ATPase subunit of the terminase, and DNA polymerase genes were sequenced. Phylogenetic analysis revealed strongest similarity with alloherpesviruses belonging to the genus Ictalurivirus and Salmonivirus. The ISH showed specific labeling of nuclear inclusions in the cytomegalic cells. While virus isolation was unsuccessful, the results obtained through different diagnostic tests in the present study confirm the discovery of a new alloherpesvirus affecting Atlantic cod. The authors propose the formal species designation Gadid herpesvirus 1 (GaHV-1) to be considered for approval by the International Committee on the Taxonomy of Viruses.


Subject(s)
Fish Diseases/virology , Gadus morhua/virology , Herpesviridae Infections/veterinary , Herpesviridae , Animals , Cells, Cultured , Cloning, Molecular , DNA, Viral/genetics , Fish Diseases/pathology , Herpesviridae/genetics , Herpesviridae Infections/pathology , Herpesviridae Infections/virology , In Situ Hybridization , Microscopy, Electron, Transmission/veterinary , Phylogeny , Polymerase Chain Reaction/veterinary , Sequence Alignment , Sequence Analysis, DNA
8.
Dis Aquat Organ ; 59(3): 235-48, 2004 Jun 11.
Article in English | MEDLINE | ID: mdl-15264720

ABSTRACT

Serine proteases have been recognized as key factors in parasite physiology and disease development. We have identified a serine protease gene from Myxobolus cerebralis, MyxSP-1, the myxozoan parasite causing whirling disease in salmonid fishes. The amino acid sequence, as deduced from the cDNA sequence, included a catalytic residue arrangement similar to that of the chymotrypsin family of serine proteases. A real-time TaqMan polymerase chain reaction (PCR) analysis revealed differences in the transcription levels for the chymotrypsin-like protease as found in early, intermediate, and late developmental stages of the parasite in experimentally-infected rainbow trout Oncorhynchus mykiss. MyxSP-1 transcription differed between individual tissues at each sampling point and in the same tissues over time (p < 0.0001). A nonradioactive mRNA in situ hybridization (ISH) protocol was developed to detect MyxSP-1 transcripts. Using a mixture of 3 digoxigenin-labeled antisense mRNA probes, MyxSP-1 transcription was observed in developmental stages of the parasite during the acute and chronic phases of the disease over a 240 d time period in infected rainbow trout tissues. MyxSP-1 transcription observed by ISH in cartilage and as associated with cartilage destruction was consistent with our real-time TaqMan PCR findings that demonstrated high levels of MyxSP-1 transcription during lesion development. Identifying genes encoding these enzymes and characterization of their functions can lead to the development of new chemotherapeutic protocols and vaccine approaches to control parasitic diseases.


Subject(s)
Eukaryota/genetics , Fish Diseases/parasitology , Oncorhynchus mykiss , Protozoan Infections, Animal , Serine Endopeptidases/genetics , Transcription, Genetic/genetics , Amino Acid Sequence , Analysis of Variance , Animals , Base Sequence , Conserved Sequence/genetics , DNA Primers , DNA, Complementary/genetics , Eukaryota/growth & development , Histological Techniques , In Situ Hybridization , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Sequence Analysis, DNA , Serine Endopeptidases/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...