Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 12610, 2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32699291

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Sci Rep ; 9(1): 18030, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31792257

ABSTRACT

Soil organic carbon (SOC) dynamics represent a persisting uncertainty in our understanding of the global carbon cycle. SOC storage is strongly linked to plant inputs via the formation of soil organic matter, but soil geochemistry also plays a critical role. In tropical soils with rapid SOC turnover, the association of organic matter with soil minerals is particularly important for stabilising SOC but projected increases in tropical forest productivity could trigger feedbacks that stimulate the release of stored SOC. Here, we demonstrate limited additional SOC storage after 13-15 years of experimentally doubled aboveground litter inputs in a lowland tropical forest. We combined biological, physical, and chemical methods to characterise SOC along a gradient of bioavailability. After 13 years of monthly litter addition treatments, most of the additional SOC was readily bioavailable and we observed no increase in mineral-associated SOC. Importantly, SOC with weak association to soil minerals declined in response to long-term litter addition, suggesting that increased plant inputs could modify the formation of organo-mineral complexes in tropical soils. Hence, we demonstrate the limited capacity of tropical soils to sequester additional C inputs and provide insights into potential underlying mechanisms.

3.
Sci Total Environ ; 648: 745-753, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30134212

ABSTRACT

It is well established that the abundances of nitrogen (N) transforming microbes are strongly influenced by land-use intensity in lowland grasslands. However, their responses to management change in less productive and less fertilized mountain grasslands are largely unknown. We studied eight mountain grasslands, positioned along gradients of management intensity in Austria, the UK, and France, which differed in their historical management trajectories. We measured the abundance of ammonia-oxidizing bacteria (AOB) and archaea (AOA) as well as nitrite-reducing bacteria using specific marker genes. We found that management affected the abundance of these microbial groups along each transect, though the specific responses differed between sites, due to different management histories and resulting variations in environmental parameters. In Austria, cessation of management caused an increase in nirK and nirS gene abundances. In the UK, intensification of grassland management led to 10-fold increases in the abundances of AOA and AOB and doubling of nirK gene abundance. In France, ploughing of previously mown grassland caused a 20-fold increase in AOA abundance. Across sites the abundance of AOB was most strongly related to soil NO3--N availability, and AOA were favored by higher soil pH. Among the nitrite reducers, nirS abundance correlated most strongly with N parameters, such as soil NO3--N, microbial N, leachate NH4+-N, while the abundance of nirK-denitrifiers was affected by soil total N, organic matter (SOM) and water content. We conclude that alteration of soil environmental conditions is the dominant mechanism by which land management practices influence the abundance of each group of ammonia oxidizers and nitrite reducers.

4.
Ecol Evol ; 8(7): 3787-3796, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29686858

ABSTRACT

Global change is affecting primary productivity in forests worldwide, and this, in turn, will alter long-term carbon (C) sequestration in wooded ecosystems. On one hand, increased primary productivity, for example, in response to elevated atmospheric carbon dioxide (CO 2), can result in greater inputs of organic matter to the soil, which could increase C sequestration belowground. On other hand, many of the interactions between plants and microorganisms that determine soil C dynamics are poorly characterized, and additional inputs of plant material, such as leaf litter, can result in the mineralization of soil organic matter, and the release of soil C as CO 2 during so-called "priming effects". Until now, very few studies made direct comparison of changes in soil C dynamics in response to altered plant inputs in different wooded ecosystems. We addressed this with a cross-continental study with litter removal and addition treatments in a temperate woodland (Wytham Woods) and lowland tropical forest (Gigante forest) to compare the consequences of increased litterfall on soil respiration in two distinct wooded ecosystems. Mean soil respiration was almost twice as high at Gigante (5.0 µmol CO 2 m-2 s-1) than at Wytham (2.7 µmol CO 2 m-2 s-1) but surprisingly, litter manipulation treatments had a greater and more immediate effect on soil respiration at Wytham. We measured a 30% increase in soil respiration in response to litter addition treatments at Wytham, compared to a 10% increase at Gigante. Importantly, despite higher soil respiration rates at Gigante, priming effects were stronger and more consistent at Wytham. Our results suggest that in situ priming effects in wooded ecosystems track seasonality in litterfall and soil respiration but the amount of soil C released by priming is not proportional to rates of soil respiration. Instead, priming effects may be promoted by larger inputs of organic matter combined with slower turnover rates.

5.
Methods Ecol Evol ; 8(9): 1042-1050, 2017 09.
Article in English | MEDLINE | ID: mdl-28989596

ABSTRACT

Root exudation is a key component of nutrient and carbon dynamics in terrestrial ecosystems. Exudation rates vary widely by plant species and environmental conditions, but our understanding of how root exudates affect soil functioning is incomplete, in part because there are few viable methods to manipulate root exudates in situ. To address this, we devised the Automated Root Exudate System (ARES), which simulates increased root exudation by applying small amounts of labile solutes at regular intervals in the field.The ARES is a gravity-fed drip irrigation system comprising a reservoir bottle connected via a timer to a micro-hose irrigation grid covering c. 1 m2; 24 drip-tips are inserted into the soil to 4-cm depth to apply solutions into the rooting zone. We installed two ARES subplots within existing litter removal and control plots in a temperate deciduous woodland. We applied either an artificial root exudate solution (RE) or a procedural control solution (CP) to each subplot for 1 min day-1 during two growing seasons. To investigate the influence of root exudation on soil carbon dynamics, we measured soil respiration monthly and soil microbial biomass at the end of each growing season.The ARES applied the solutions at a rate of c. 2 L m-2 week-1 without significantly increasing soil water content. The application of RE solution had a clear effect on soil carbon dynamics, but the response varied by litter treatment. Across two growing seasons, soil respiration was 25% higher in RE compared to CP subplots in the litter removal treatment, but not in the control plots. By contrast, we observed a significant increase in microbial biomass carbon (33%) and nitrogen (26%) in RE subplots in the control litter treatment.The ARES is an effective, low-cost method to apply experimental solutions directly into the rooting zone in the field. The installation of the systems entails minimal disturbance to the soil and little maintenance is required. Although we used ARES to apply root exudate solution, the method can be used to apply many other treatments involving solute inputs at regular intervals in a wide range of ecosystems.

6.
New Phytol ; 204(2): 408-23, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24995955

ABSTRACT

Plant-soil feedbacks can influence plant growth and community structure by modifying soil biota and nutrients. Because most research has been performed at the species level and in monoculture, our ability to predict responses across species and in mixed communities is limited. As plant traits have been linked to both soil properties and plant growth, they may provide a useful approach for an understanding of feedbacks at a generic level. We measured how monocultures and mixtures of grassland plant species with differing traits responded to soil that had been conditioned by model grassland plant communities dominated by either slow- or fast-growing species. Soils conditioned by the fast-growing community had higher nitrogen availability than those conditioned by the slow-growing community; these changes influenced future plant growth. Effects were stronger, and plant traits had greater predictive power, in mixtures than in monocultures. In monoculture, all species produced more above-ground biomass in soil conditioned by the fast-growing community. In mixtures, slow-growing species produced more above-ground biomass, and fast-growing species produced more below-ground biomass, in soils conditioned by species with similar traits. The use of a plant trait-based approach may therefore improve our understanding of differential plant species responses to plant-soil feedbacks, especially in a mixed-species environment.


Subject(s)
Feedback, Physiological , Plant Development , Soil Microbiology , Soil/chemistry , Biomass , Ecosystem , Nitrogen/metabolism , Phenotype , Plant Shoots , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...