Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Genome Biol Evol ; 16(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38502060

ABSTRACT

Conserved noncoding elements (CNEs) are DNA sequences located outside of protein-coding genes that can remain under purifying selection for up to hundreds of millions of years. Studies in vertebrate genomes have revealed that most CNEs carry out regulatory functions. Notably, many of them are enhancers that control the expression of homeodomain transcription factors and other genes that play crucial roles in embryonic development. To further our knowledge of CNEs in other parts of the animal tree, we conducted a large-scale characterization of CNEs in more than 50 genomes from three of the main branches of the metazoan tree: Cnidaria, Mollusca, and Arthropoda. We identified hundreds of thousands of CNEs and reconstructed the temporal dynamics of their appearance in each lineage, as well as determining their spatial distribution across genomes. We show that CNEs evolve repeatedly around the same genes across the Metazoa, including around homeodomain genes and other transcription factors; they also evolve repeatedly around genes involved in neural development. We also show that transposons are a major source of CNEs, confirming previous observations from vertebrates and suggesting that they have played a major role in wiring developmental gene regulatory mechanisms since the dawn of animal evolution.


Subject(s)
Regulatory Sequences, Nucleic Acid , Vertebrates , Animals , Conserved Sequence/genetics , Vertebrates/genetics , Base Sequence , Transcription Factors/genetics , Evolution, Molecular
2.
Genome Res ; 34(3): 498-513, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38508693

ABSTRACT

Hydractinia is a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, Hydractinia symbiolongicarpus and Hydractinia echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself.


Subject(s)
Genome , Hydrozoa , Animals , Hydrozoa/genetics , Evolution, Molecular , Transcriptome , Stem Cells/metabolism , Male , Phylogeny , Single-Cell Analysis/methods
3.
Proteomics ; : e2300397, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329168

ABSTRACT

This Dataset Brief describes the computational prediction of protein structures for the ctenophore Mnemiopsis leidyi. Here, we report the proteome-scale generation of 15,333 protein structure predictions using AlphaFold, as well as an updated implementation of publicly available search, manipulation, and visualization tools for these protein structure predictions through the Mnemiopsis Genome Project Portal (https://research.nhgri.nih.gov/mnemiopsis). The utility of these predictions is demonstrated by highlighting comparisons to experimentally determined structures for the light-sensitive protein mnemiopsin 1 and the ionotropic glutamate receptor (iGluR). The application of these novel protein structure prediction methods will serve to further position non-bilaterian species such as Mnemiopsis as powerful model systems for the study of early animal evolution and human health.

4.
bioRxiv ; 2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37786714

ABSTRACT

Hydractinia is a colonial marine hydroid that exhibits remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, H. symbiolongicarpus and H. echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from non-self.

5.
EMBO J ; 42(15): e112934, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37708295

ABSTRACT

N6-methyldeoxyadenosine (6mA) is a chemical alteration of DNA, observed across all realms of life. Although the functions of 6mA are well understood in bacteria and protists, its roles in animal genomes have been controversial. We show that 6mA randomly accumulates in early embryos of the cnidarian Hydractinia symbiolongicarpus, with a peak at the 16-cell stage followed by clearance to background levels two cell cycles later, at the 64-cell stage-the embryonic stage at which zygotic genome activation occurs in this animal. Knocking down Alkbh1, a putative initiator of animal 6mA clearance, resulted in higher levels of 6mA at the 64-cell stage and a delay in the initiation of zygotic transcription. Our data are consistent with 6mA originating from recycled nucleotides of degraded m6A-marked maternal RNA postfertilization. Therefore, while 6mA does not function as an epigenetic mark in Hydractinia, its random incorporation into the early embryonic genome inhibits transcription. In turn, Alkbh1 functions as a genomic 6mA "cleaner," facilitating timely zygotic genome activation. Given the random nature of genomic 6mA accumulation and its ability to interfere with gene expression, defects in 6mA clearance may represent a hitherto unknown cause of various pathologies.


Subject(s)
Cnidaria , Animals , Genomics , Kinetics , Epigenomics , Cognition
6.
Cell Rep ; 42(7): 112687, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37392741

ABSTRACT

Cell fate stability is essential to maintaining "law and order" in complex animals. However, high stability comes at the cost of reduced plasticity and, by extension, poor regenerative ability. This evolutionary trade-off has resulted in most modern animals being rather simple and regenerative or complex and non-regenerative. The mechanisms mediating cellular plasticity and allowing for regeneration remain unknown. We show that signals emitted by senescent cells can destabilize the differentiated state of neighboring somatic cells, reprogramming them into stem cells that are capable of driving whole-body regeneration in the cnidarian Hydractinia symbiolongicarpus. Pharmacological or genetic inhibition of senescence prevents reprogramming and regeneration. Conversely, induction of transient ectopic senescence in a regenerative context results in supernumerary stem cells and faster regeneration. We propose that senescence signaling is an ancient mechanism mediating cellular plasticity. Understanding the senescence environment that promotes cellular reprogramming could provide an avenue to enhance regeneration.


Subject(s)
Cnidaria , Animals , Cellular Reprogramming , Cellular Senescence/genetics , Signal Transduction , Stem Cells
7.
BMC Biol ; 21(1): 32, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36782149

ABSTRACT

BACKGROUND: Sex determination occurs across animal species, but most of our knowledge about its mechanisms comes from only a handful of bilaterian taxa. This limits our ability to infer the evolutionary history of sex determination within animals. RESULTS: In this study, we generated a linkage map of the genome of the colonial cnidarian Hydractinia symbiolongicarpus and used it to demonstrate that this species has an XX/XY sex determination system. We demonstrate that the X and Y chromosomes have pseudoautosomal and non-recombining regions. We then use the linkage map and a method based on the depth of sequencing coverage to identify genes encoded in the non-recombining region and show that many of them have male gonad-specific expression. In addition, we demonstrate that recombination rates are enhanced in the female genome and that the haploid chromosome number in Hydractinia is n = 15. CONCLUSIONS: These findings establish Hydractinia as a tractable non-bilaterian model system for the study of sex determination and the evolution of sex chromosomes.


Subject(s)
Hydrozoa , Sex Chromosomes , Male , Female , Animals , Sex Chromosomes/genetics , Chromosome Mapping , Y Chromosome/genetics , Hydrozoa/genetics , Evolution, Molecular
8.
Genome Res ; 33(2): 283-298, 2023 02.
Article in English | MEDLINE | ID: mdl-36639202

ABSTRACT

The epithelial and interstitial stem cells of the freshwater polyp Hydra are the best-characterized stem cell systems in any cnidarian, providing valuable insight into cell type evolution and the origin of stemness in animals. However, little is known about the transcriptional regulatory mechanisms that determine how these stem cells are maintained and how they give rise to their diverse differentiated progeny. To address such questions, a thorough understanding of transcriptional regulation in Hydra is needed. To this end, we generated extensive new resources for characterizing transcriptional regulation in Hydra, including new genome assemblies for Hydra oligactis and the AEP strain of Hydra vulgaris, an updated whole-animal single-cell RNA-seq atlas, and genome-wide maps of chromatin interactions, chromatin accessibility, sequence conservation, and histone modifications. These data revealed the existence of large kilobase-scale chromatin interaction domains in the Hydra genome that contain transcriptionally coregulated genes. We also uncovered the transcriptomic profiles of two previously molecularly uncharacterized cell types: isorhiza-type nematocytes and somatic gonad ectoderm. Finally, we identified novel candidate regulators of cell type-specific transcription, several of which have likely been conserved at least since the divergence of Hydra and the jellyfish Clytia hemisphaerica more than 400 million years ago.


Subject(s)
Hydra , Animals , Hydra/genetics , Hydra/metabolism , Cell Differentiation , Chromatin/metabolism , Chromosomes , Epigenesis, Genetic
9.
Mol Psychiatry ; 28(2): 792-800, 2023 02.
Article in English | MEDLINE | ID: mdl-36380233

ABSTRACT

Despite advances in identifying rare and common genetic variants conferring risk for ADHD, the lack of a transcriptomic understanding of cortico-striatal brain circuitry has stymied a molecular mechanistic understanding of this disorder. To address this gap, we mapped the transcriptome of the caudate nucleus and anterior cingulate cortex in post-mortem tissue from 60 individuals with and without ADHD. Significant differential expression of genes was found in the anterior cingulate cortex and, to a lesser extent, the caudate. Significant downregulation emerged of neurotransmitter gene pathways, particularly glutamatergic, in keeping with models that implicate these neurotransmitters in ADHD. Consistent with the genetic overlap between mental disorders, correlations were found between the cortico-striatal transcriptomic changes seen in ADHD and those seen in other neurodevelopmental and mood disorders. This transcriptomic evidence points to cortico-striatal neurotransmitter anomalies in the pathogenesis of ADHD, consistent with current models of the disorder.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Humans , Attention Deficit Disorder with Hyperactivity/metabolism , Transcriptome/genetics , Brain Mapping , Magnetic Resonance Imaging , Corpus Striatum/metabolism , Brain/metabolism
10.
Proc Natl Acad Sci U S A ; 119(40): e2207374119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161920

ABSTRACT

Most colonial marine invertebrates are capable of allorecognition, the ability to distinguish between themselves and conspecifics. One long-standing question is whether invertebrate allorecognition genes are homologous to vertebrate histocompatibility genes. In the cnidarian Hydractinia symbiolongicarpus, allorecognition is controlled by at least two genes, Allorecognition 1 (Alr1) and Allorecognition 2 (Alr2), which encode highly polymorphic cell-surface proteins that serve as markers of self. Here, we show that Alr1 and Alr2 are part of a family of 41 Alr genes, all of which reside in a single genomic interval called the Allorecognition Complex (ARC). Using sensitive homology searches and highly accurate structural predictions, we demonstrate that the Alr proteins are members of the immunoglobulin superfamily (IgSF) with V-set and I-set Ig domains unlike any previously identified in animals. Specifically, their primary amino acid sequences lack many of the motifs considered diagnostic for V-set and I-set domains, yet they adopt secondary and tertiary structures nearly identical to canonical Ig domains. Thus, the V-set domain, which played a central role in the evolution of vertebrate adaptive immunity, was present in the last common ancestor of cnidarians and bilaterians. Unexpectedly, several Alr proteins also have immunoreceptor tyrosine-based activation motifs and immunoreceptor tyrosine-based inhibitory motifs in their cytoplasmic tails, suggesting they could participate in pathways homologous to those that regulate immunity in humans and flies. This work expands our definition of the IgSF with the addition of a family of unusual members, several of which play a role in invertebrate histocompatibility.


Subject(s)
Hydrozoa , Immunoglobulins , Major Histocompatibility Complex , Animals , Hydrozoa/genetics , Hydrozoa/immunology , Immunoglobulins/chemistry , Immunoglobulins/genetics , Major Histocompatibility Complex/genetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Protein Domains , Tyrosine/chemistry , Tyrosine/genetics
11.
Elife ; 112022 05 24.
Article in English | MEDLINE | ID: mdl-35608899

ABSTRACT

Neurogenesis is the generation of neurons from stem cells, a process that is regulated by SoxB transcription factors (TFs) in many animals. Although the roles of these TFs are well understood in bilaterians, how their neural function evolved is unclear. Here, we use Hydractinia symbiolongicarpus, a member of the early-branching phylum Cnidaria, to provide insight into this question. Using a combination of mRNA in situ hybridization, transgenesis, gene knockdown, transcriptomics, and in vivo imaging, we provide a comprehensive molecular and cellular analysis of neurogenesis during embryogenesis, homeostasis, and regeneration in this animal. We show that SoxB genes act sequentially at least in some cases. Stem cells expressing Piwi1 and Soxb1, which have broad developmental potential, become neural progenitors that express Soxb2 before differentiating into mature neural cells. Knockdown of SoxB genes resulted in complex defects in embryonic neurogenesis. Hydractinia neural cells differentiate while migrating from the aboral to the oral end of the animal, but it is unclear whether migration per se or exposure to different microenvironments is the main driver of their fate determination. Our data constitute a rich resource for studies aiming at addressing this question, which is at the heart of understanding the origin and development of animal nervous systems.


Subject(s)
Cnidaria , Animals , Cnidaria/genetics , Nervous System , Neurogenesis/genetics , Neurons , Stem Cells
12.
Mol Biol Evol ; 38(10): 4628-4633, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34048573

ABSTRACT

To address the void in the availability of high-quality proteomic data traversing the animal tree, we have implemented a pipeline for generating de novo assemblies based on publicly available data from the NCBI Sequence Read Archive, yielding a comprehensive collection of proteomes from 100 species spanning 21 animal phyla. We have also created the Animal Proteome Database (AniProtDB), a resource providing open access to this collection of high-quality metazoan proteomes, along with information on predicted proteins and protein domains for each taxonomic classification and the ability to perform sequence similarity searches against all proteomes generated using this pipeline. This solution vastly increases the utility of these data by removing the barrier to access for research groups who do not have the expertise or resources to generate these data themselves and enables the use of data from nontraditional research organisms that have the potential to address key questions in biomedicine.


Subject(s)
Proteome , Proteomics , Animals , Databases, Factual , Genomics , Sequence Analysis
13.
Database (Oxford) ; 20202020 01 01.
Article in English | MEDLINE | ID: mdl-32386298

ABSTRACT

Following the completion of the genome sequencing and gene prediction of Mnemiopsis leidyi, a lobate ctenophore that is native to the coastal waters of the western Atlantic Ocean, we developed and implemented the Mnemiopsis Genome Project Portal (MGP Portal), a comprehensive Web-based data portal for navigating the genome sequence and gene annotations. In the years following the first release of the MGP Portal, it has become evident that the inclusion of data from significant published studies on Mnemiopsis has been critical to its adoption as the centralized resource for this emerging model organism. With this most recent update, the Portal has significantly expanded to include in situ images, temporal developmental expression profiles and single-cell expression data. Recent enhancements also include implementations of an updated BLAST interface, new graphical visualization tools and updates to gene pages that integrate all new data types. Database URL: https://research.nhgri.nih.gov/mnemiopsis/.


Subject(s)
Ctenophora , Animals , Base Sequence , Ctenophora/genetics , Data Visualization , Gene Expression , Genome/genetics
14.
Science ; 367(6479): 757-762, 2020 02 14.
Article in English | MEDLINE | ID: mdl-32054756

ABSTRACT

Clonal animals do not sequester a germ line during embryogenesis. Instead, they have adult stem cells that contribute to somatic tissues or gametes. How germ fate is induced in these animals, and whether this process is related to bilaterian embryonic germline induction, is unknown. We show that transcription factor AP2 (Tfap2), a regulator of mammalian germ lines, acts to commit adult stem cells, known as i-cells, to the germ cell fate in the clonal cnidarian Hydractinia symbiolongicarpus Tfap2 mutants lacked germ cells and gonads. Transplanted wild-type cells rescued gonad development but not germ cell induction in Tfap2 mutants. Forced expression of Tfap2 in i-cells converted them to germ cells. Therefore, Tfap2 is a regulator of germ cell commitment across germ line-sequestering and germ line-nonsequestering animals.


Subject(s)
Adult Stem Cells/cytology , Gametogenesis/physiology , Germ Cells/cytology , Gonads/embryology , Hydrozoa/embryology , Transcription Factor AP-2/physiology , Adult Stem Cells/metabolism , Animals , Female , Gametogenesis/genetics , Gene Expression Regulation, Developmental , Gonads/cytology , Hydrozoa/cytology , Hydrozoa/genetics , Male , Transcription Factor AP-2/genetics
15.
BMC Genomics ; 19(1): 649, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30176818

ABSTRACT

BACKGROUND: Hydractinia symbiolongicarpus, a colonial cnidarian, is a tractable model system for many cnidarian-specific and general biological questions. Until recently, tests of gene function in Hydractinia have relied on laborious forward genetic approaches, randomly integrated transgenes, or transient knockdown of mRNAs. RESULTS: Here, we report the use of CRISPR/Cas9 genome editing to generate targeted genomic insertions in H. symbiolonigcarpus. We used CRISPR/Cas9 to promote homologous recombination of two fluorescent reporters, eGFP and tdTomato, into the Eukaryotic elongation factor 1 alpha (Eef1a) locus. We demonstrate that the transgenes are expressed ubiquitously and are stable over two generations of breeding. We further demonstrate that CRISPR/Cas9 genome editing can be used to mark endogenous proteins with FLAG or StrepII-FLAG affinity tags to enable in vivo and ex vivo protein studies. CONCLUSIONS: This is the first account of CRISPR/Cas9 mediated knockins in Hydractinia and the first example of the germline transmission of a CRISPR/Cas9 inserted transgene in a cnidarian. The ability to precisely insert exogenous DNA into the Hydractinia genome will enable sophisticated genetic studies and further development of functional genomics tools in this understudied cnidarian model.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Knock-In Techniques , Hydrozoa/genetics , Peptide Elongation Factor 1/genetics , Animals , Genetic Vectors , Homologous Recombination , Hydrozoa/growth & development , Transgenes
16.
Mol Reprod Dev ; 84(11): 1218-1229, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29068507

ABSTRACT

The maternal-zygotic transition (MZT) describes the developmental reprogramming of gene expression marked by the degradation of maternally supplied gene products and activation of the zygotic genome. While the timing and duration of the MZT vary among taxa, little is known about early-stage transcriptional dynamics in the non-bilaterian phylum Ctenophora. We sought to better understand the extent of maternal mRNA loading and subsequent differential transcript abundance during the earliest stages of development by performing comprehensive RNA-sequencing-based analyses of mRNA abundance in single- and eight-cell stage embryos in the lobate ctenophore Mnemiopsis leidyi. We found 1,908 contigs with significant differential abundance between single- and eight-cell stages, of which 1,208 contigs were more abundant at the single-cell stage and 700 contigs were more abundant at the eight-cell stage. Of the differentially abundant contigs, 267 were exclusively present in the eight-cell samples, providing strong evidence that both the MZT and zygotic genome activation (ZGA) have commenced by the eight-cell stage. Many highly abundant transcripts encode genes involved in molecular mechanisms critical to the MZT, such as maternal transcript degradation, serine/threonine kinase activity, and chromatin remodeling. Our results suggest that chromosomal restructuring, which is critical to ZGA and the initiation of transcriptional regulation necessary for normal development, begins by the third cleavage within 1.5 hr post-fertilization in M. leidyi.


Subject(s)
Blastomeres/metabolism , Ctenophora/embryology , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental/physiology , Genome , Zygote/metabolism , Animals , Blastomeres/cytology , Ctenophora/genetics , Embryo, Nonmammalian/cytology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Zygote/cytology
17.
Dev Biol ; 428(1): 224-231, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28601529

ABSTRACT

The function of Notch signaling was previously studied in two cnidarians, Hydra and Nematostella, representing the lineages Hydrozoa and Anthozoa, respectively. Using pharmacological inhibition in Hydra and a combination of pharmacological and genetic approaches in Nematostella, it was shown in both animals that Notch is required for tentacle morphogenesis and for late stages of stinging cell maturation. Surprisingly, a role for Notch in neural development, which is well documented in bilaterians, was evident in embryonic Nematostella but not in adult Hydra. Adult neurogenesis in the latter seemed to be unaffected by DAPT, a drug that inhibits Notch signaling. To address this apparent discrepancy, we studied the role of Notch in Hydractinia echinata, an additional hydrozoan, in all life stages. Using CRISPR-Cas9 mediated mutagenesis, transgenesis, and pharmacological interference we show that Notch is dispensable for Hydractinia normal neurogenesis in all life stages but is required for the maturation of stinging cells and for tentacle morphogenesis. Our results are consistent with a conserved role for Notch in morphogenesis and nematogenesis across Cnidaria, and a lineage-specific loss of Notch dependence in neurogenesis in hydrozoans.


Subject(s)
Extremities/embryology , Hydrozoa/embryology , Neurogenesis/physiology , Receptors, Notch/metabolism , Animals , CRISPR-Cas Systems/genetics , Diamines/pharmacology , Female , Hydrozoa/genetics , In Situ Hybridization , Male , Mutagenesis/genetics , Neurogenesis/genetics , Receptors, Notch/antagonists & inhibitors , Receptors, Notch/genetics , Signal Transduction/genetics , Thiazoles/pharmacology
18.
Mol Biol Evol ; 34(6): 1543-1546, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28333216

ABSTRACT

The ability to manipulate sequence, alignment, and phylogenetic tree files has become an increasingly important skill in the life sciences, whether to generate summary information or to prepare data for further downstream analysis. The command line can be an extremely powerful environment for interacting with these resources, but only if the user has the appropriate general-purpose tools on hand. BuddySuite is a collection of four independent yet interrelated command-line toolkits that facilitate each step in the workflow of sequence discovery, curation, alignment, and phylogenetic reconstruction. Most common sequence, alignment, and tree file formats are automatically detected and parsed, and over 100 tools have been implemented for manipulating these data. The project has been engineered to easily accommodate the addition of new tools, is written in the popular programming language Python, and is hosted on the Python Package Index and GitHub to maximize accessibility. Documentation for each BuddySuite tool, including usage examples, is available at http://tiny.cc/buddysuite_wiki. All software is open source and freely available through http://research.nhgri.nih.gov/software/BuddySuite.


Subject(s)
Sequence Alignment/methods , Sequence Analysis, DNA/methods , Computational Biology , Phylogeny , Software
19.
Cell Rep ; 18(6): 1395-1409, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28178518

ABSTRACT

SoxB transcription factors and histone deacetylases (HDACs) are each major players in the regulation of neurogenesis, but a functional link between them has not been previously demonstrated. Here, we show that SoxB2 and Hdac2 act together to regulate neurogenesis in the cnidarian Hydractinia echinata during tissue homeostasis and head regeneration. We find that misexpression of SoxB genes modifies the number of neural cells in all life stages and interferes with head regeneration. Hdac2 was co-expressed with SoxB2, and its downregulation phenocopied SoxB2 knockdown. We also show that SoxB2 and Hdac2 promote each other's transcript levels, but Hdac2 counteracts this amplification cycle by deacetylating and destabilizing SoxB2 protein. Finally, we present evidence for conservation of these interactions in human neural progenitors. We hypothesize that crosstalk between SoxB transcription factors and Hdac2 is an ancient feature of metazoan neurogenesis and functions to stabilize the correct levels of these multifunctional proteins.


Subject(s)
Cnidaria/metabolism , Cnidaria/physiology , Histone Deacetylase 2/metabolism , Neurogenesis/physiology , SOXB2 Transcription Factors/metabolism , Animals , Biological Evolution , Down-Regulation/physiology , Humans , Neurons/metabolism , Neurons/physiology , Regeneration/physiology , Stem Cells/metabolism , Stem Cells/physiology
20.
Epigenetics Chromatin ; 9(1): 36, 2016.
Article in English | MEDLINE | ID: mdl-27602058

ABSTRACT

BACKGROUND: Cnidarians are a group of early branching animals including corals, jellyfish and hydroids that are renowned for their high regenerative ability, growth plasticity and longevity. Because cnidarian genomes are conventional in terms of protein-coding genes, their remarkable features are likely a consequence of epigenetic regulation. To facilitate epigenetics research in cnidarians, we analysed the histone complement of the cnidarian model organism Hydractinia echinata using phylogenomics, proteomics, transcriptomics and mRNA in situ hybridisations. RESULTS: We find that the Hydractinia genome encodes 19 histones and analyse their spatial expression patterns, genomic loci and replication-dependency. Alongside core and other replication-independent histone variants, we find several histone replication-dependent variants, including a rare replication-dependent H3.3, a female germ cell-specific H2A.X and an unusual set of five H2B variants, four of which are male germ cell-specific. We further confirm the absence of protamines in Hydractinia. CONCLUSIONS: Since no protamines are found in hydroids, we suggest that the novel H2B variants are pivotal for sperm DNA packaging in this class of Cnidaria. This study adds to the limited number of full histone gene complements available in animals and sets a comprehensive framework for future studies on the role of histones and their post-translational modifications in cnidarian epigenetics. Finally, it provides insight into the evolution of spermatogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...