Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Aging ; 139: 73-81, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38643691

ABSTRACT

Through the application of machine learning algorithms to neuroimaging data the brain age methodology was shown to provide a useful individual-level biological age prediction and identify key brain regions responsible for the prediction. In this study, we present the methodology of constructing a rhesus macaque brain age model using a machine learning algorithm and discuss the key predictive brain regions in comparison to the human brain, to shed light on cross-species primate similarities and differences. Structural information of the brain (e.g., parcellated volumes) from brain magnetic resonance imaging of 43 rhesus macaques were used to develop brain atlas-based features to build a brain age model that predicts biological age. The best-performing model used 22 selected features and achieved an R2 of 0.72. We also identified interpretable predictive brain features including Right Fronto-orbital Cortex, Right Frontal Pole, Right Inferior Lateral Parietal Cortex, and Bilateral Posterior Central Operculum. Our findings provide converging evidence of the parallel and comparable brain regions responsible for both non-human primates and human biological age prediction.


Subject(s)
Aging , Brain , Macaca mulatta , Machine Learning , Magnetic Resonance Imaging , Animals , Brain/diagnostic imaging , Aging/physiology , Aging/pathology , Humans , Male , Longevity/physiology , Female , Algorithms
2.
Front Neuroimaging ; 1: 947526, 2022.
Article in English | MEDLINE | ID: mdl-37555179

ABSTRACT

Postmortem studies are currently considered a gold standard for investigating brain structure at the cellular level. To investigate cellular changes in the context of human development, aging, or disease treatment, non-invasive in-vivo imaging methods such as diffusion MRI (dMRI) are needed. However, dMRI measures are only indirect measures and require validation in gray matter (GM) in the context of their sensitivity to the underlying cytoarchitecture, which has been lacking. Therefore, in this study we conducted direct comparisons between in-vivo dMRI measures and histology acquired from the same four rhesus monkeys. Average and heterogeneity of fractional anisotropy and trace from diffusion tensor imaging and mean squared displacement (MSD) and return-to-origin-probability from biexponential model were calculated in nine cytoarchitectonically different GM regions using dMRI data. DMRI measures were compared with corresponding histology measures of regional average and heterogeneity in cell area density. Results show that both average and heterogeneity in trace and MSD measures are sensitive to the underlying cytoarchitecture (cell area density) and capture different aspects of cell composition and organization. Trace and MSD thus would prove valuable as non-invasive imaging biomarkers in future studies investigating GM cytoarchitectural changes related to development and aging as well as abnormal cellular pathologies in clinical studies.

3.
Mol Psychiatry ; 26(9): 5357-5370, 2021 09.
Article in English | MEDLINE | ID: mdl-33483689

ABSTRACT

White matter (WM) abnormalities are repeatedly demonstrated across the schizophrenia time-course. However, our understanding of how demographic and clinical variables interact, influence, or are dependent on WM pathologies is limited. The most well-known barriers to progress are heterogeneous findings due to small sample sizes and the confounding influence of age on WM. The present study leverages access to the harmonized diffusion magnetic-resonance-imaging data and standardized clinical data from 13 international sites (597 schizophrenia patients (SCZ)). Fractional anisotropy (FA) values for all major WM structures in patients were predicted based on FA models estimated from a healthy population (n = 492). We utilized the deviations between predicted and real FA values to answer three essential questions. (1) "Which clinical variables explain WM abnormalities?". (2) "Does the degree of WM abnormalities predict symptom severity?". (3) "Does sex influence any of those relationships?". Regression and mediator analyses revealed that a longer duration-of-illness is associated with more severe WM abnormalities in several tracts. In addition, they demonstrated that a higher antipsychotic medication dose is related to more severe corpus callosum abnormalities. A structural equation model revealed that patients with more WM abnormalities display higher symptom severity. Last, the results exhibited sex-specificity. Males showed a stronger association between duration-of-illness and WM abnormalities. Females presented a stronger association between WM abnormalities and symptom severity, with IQ impacting this relationship. Our findings provide clear evidence for the interaction of demographic, clinical, and behavioral variables with WM pathology in SCZ. Our results also point to the need for longitudinal studies, directly investigating the casualty and sex-specificity of these relationships, as well as the impact of cognitive resiliency on structure-function relationships.


Subject(s)
Schizophrenia , White Matter , Anisotropy , Brain/diagnostic imaging , Demography , Diffusion Tensor Imaging , Female , Humans , Male , White Matter/diagnostic imaging
4.
Cereb Cortex ; 31(1): 201-212, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32851404

ABSTRACT

Axonal myelination and repair, critical processes for brain development, maturation, and aging, remain controlled by sexual hormones. Whether this influence is reflected in structural brain differences between sexes, and whether it can be quantified by neuroimaging, remains controversial. Diffusion-weighted magnetic resonance imaging (dMRI) is an in vivo method that can track myelination changes throughout the lifespan. We utilize a large, multisite sample of harmonized dMRI data (n = 551, age = 9-65 years, 46% females/54% males) to investigate the influence of sex on white matter (WM) structure. We model lifespan trajectories of WM using the most common dMRI measure fractional anisotropy (FA). Next, we examine the influence of both age and sex on FA variability. We estimate the overlap between male and female FA and test whether it is possible to label individual brains as male or female. Our results demonstrate regionally and spatially specific effects of sex. Sex differences are limited to limbic structures and young ages. Additionally, not only do sex differences diminish with age, but tracts within each subject become more similar to one another. Last, we show the high overlap in FA between sexes, which implies that determining sex based on WM remains open.


Subject(s)
Sex Characteristics , White Matter/anatomy & histology , White Matter/diagnostic imaging , Adolescent , Adult , Aged , Aging , Anisotropy , Axons/physiology , Child , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Female , Humans , Limbic System/diagnostic imaging , Limbic System/physiology , Male , Middle Aged , Myelin Sheath/physiology , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Young Adult
5.
Cereb Cortex ; 30(12): 6191-6205, 2020 11 03.
Article in English | MEDLINE | ID: mdl-32676671

ABSTRACT

Early neuroimaging work in twin studies focused on studying genetic and environmental influence on gray matter macrostructure. However, it is also important to understand how gray matter microstructure is influenced by genes and environment to facilitate future investigations of their influence in mental disorders. Advanced diffusion MRI (dMRI) measures allow more accurate assessment of gray matter microstructure compared with conventional diffusion tensor measures. To understand genetic and environmental influence on gray matter, we used diffusion and structural MRI data from a large twin and sibling study (N = 840) and computed advanced dMRI measures including return to origin probability (RTOP), which is heavily weighted toward intracellular and intra-axonal restricted spaces, and mean squared displacement (MSD), more heavily weighted to diffusion in extracellular space and large cell bodies in gray matter. We show that while macrostructural features like brain volume are mainly genetically influenced, RTOP and MSD can together tap into both genetic and environmental influence on microstructure.


Subject(s)
Brain/anatomy & histology , Brain/growth & development , Gene-Environment Interaction , Gray Matter/anatomy & histology , Gray Matter/growth & development , Adult , Diffusion Magnetic Resonance Imaging , Female , Humans , Image Processing, Computer-Assisted , Male , Young Adult
6.
Sci Rep ; 6: 36851, 2016 11 25.
Article in English | MEDLINE | ID: mdl-27886204

ABSTRACT

Diffusion tensor imaging (DTI) provides us an insight into the micro-architecture of white-matter tracts in the brain. This method has proved promising in understanding and investigating the neuronal tracts and structural connectivity between the brain regions in primates as well as rodents. The close evolutionary relationship between canines and humans may have spawned a unique bond in regard to social cognition rendering them useful as an animal model in translational research. In this study, we acquired diffusion data from anaesthetized dogs and created a DTI-based atlas for a canine model which could be used to investigate various white matter diseases. We illustrate the application of this atlas by calculating DTI tractography based structural connectivity between the anterior cingulate cortex (ACC) and posterior cingulate cortex (PCC) regions of the default mode network (DMN) in dogs. White matter connectivity was investigated to provide structural basis for the functional dissociation observed between the anterior and posterior parts of DMN. A comparison of the integrity of long range structural connections (such as in the DMN) between dogs and humans is likely to provide us with new perspectives on the neural basis of the evolution of cognitive functions.


Subject(s)
Diffusion Tensor Imaging , Gyrus Cinguli/anatomy & histology , Gyrus Cinguli/diagnostic imaging , Neural Pathways/anatomy & histology , Neural Pathways/diagnostic imaging , White Matter/anatomy & histology , White Matter/diagnostic imaging , Animals , Dogs
7.
Front Psychiatry ; 7: 125, 2016.
Article in English | MEDLINE | ID: mdl-27531983

ABSTRACT

The high rate of fatal suicidal behavior (SB) in men is an urgent issue as highlighted in the public eye via news sources and media outlets. In this study, we have attempted to address this issue and understand the neural substrates underlying the gender differences in the rate of fatal SB. The Interpersonal-Psychological Theory of Suicide has proposed an explanation for the seemingly paradoxical relationship between gender and SB, i.e., greater non-fatal suicide attempts by women but higher number of deaths by suicide in men. This theory states that possessing suicidal desire (due to conditions such as depression) alone is not sufficient for a lethal suicide attempt. It is imperative for an individual to have the acquired capability for suicide (ACS) along with suicidal desire in order to die by suicide. Therefore, higher levels of ACS in men may explain why men are more likely to die by suicide than women, despite being less likely to experience suicidal ideation or depression. In this study, we used activation likelihood estimation meta-analysis to investigate a potential ACS network that involves neural substrates underlying emotional stoicism, sensation-seeking, pain tolerance, and fearlessness of death, along with a potential depression network that involves neural substrates that underlie clinical depression. Brain regions commonly found in ACS and depression networks for males and females were further used as seeds to obtain regions functionally and structurally connected to them. We found that the male-specific networks were more widespread and diverse than the female-specific ones. Also, while the former involved motor regions, such as the premotor cortex and cerebellum, the latter was dominated by limbic regions. This may support the fact that suicidal desire generally leads to fatal/decisive action in males, while, in females, it manifests as depression, ideation, and generally non-fatal actions. The proposed model is a first attempt to characterize the neural networks underlying gender differences in SB. Future studies should examine the proposed network to better characterize and refine this network using tasks specifically targeted toward constructs underlying ACS.

SELECTION OF CITATIONS
SEARCH DETAIL
...