Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 38(37): 11284-11295, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36083171

ABSTRACT

Adsorption of arginine-rich positively charged peptides onto neutral zwitterionic phosphocholine (PC) bilayers is a key step in the translocation of those potent cell-penetrating peptides into the cell interior. In the past, we have shown both theoretically and experimentally that polyarginines adsorb to the neutral PC-supported lipid bilayers in contrast to polylysines. However, comparing our results with previous studies showed that the results often do not match even at the qualitative level. The adsorption of arginine-rich peptides onto 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) may qualitatively depend on the actual experimental conditions where binding experiments have been performed. In this work, we systematically studied the adsorption of R9 and K9 peptides onto the POPC bilayer, aided by molecular dynamics (MD) simulations and fluorescence cross-correlation spectroscopy (FCCS) experiments. Using MD simulations, we tested a series of increasing peptide concentrations, in parallel with increasing Na+ and Ca2+ salt concentrations, showing that the apparent strength of adsorption of R9 decreases upon the increase of peptide or salt concentration in the system. The key result from the simulations is that the salt concentrations used experimentally can alter the picture of peptide adsorption qualitatively. Using FCCS experiments with fluorescently labeled R9 and K9, we first demonstrated that the binding of R9 to POPC is tighter by almost 2 orders of magnitude compared to that of K9. Finally, upon the addition of an excess of either Na+ or Ca2+ ions with R9, the total fluorescence correlation signal is lost, which implies the unbinding of R9 from the PC bilayer, in agreement with our predictions from MD simulations.


Subject(s)
Cell-Penetrating Peptides , Lipid Bilayers , Adsorption , Arginine , Cell-Penetrating Peptides/chemistry , Lecithins , Lipid Bilayers/chemistry , Osmolar Concentration , Phosphatidylcholines/chemistry , Phosphorylcholine
2.
Proc Natl Acad Sci U S A ; 115(47): 11923-11928, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30397112

ABSTRACT

Arginine-rich cell-penetrating peptides do not enter cells by directly passing through a lipid membrane; they instead passively enter vesicles and live cells by inducing membrane multilamellarity and fusion. The molecular picture of this penetration mode, which differs qualitatively from the previously proposed direct mechanism, is provided by molecular dynamics simulations. The kinetics of vesicle agglomeration and fusion by an iconic cell-penetrating peptide-nonaarginine-are documented via real-time fluorescence techniques, while the induction of multilamellar phases in vesicles and live cells is demonstrated by a combination of electron and fluorescence microscopies. This concert of experiments and simulations reveals that the identified passive cell penetration mechanism bears analogy to vesicle fusion induced by calcium ions, indicating that the two processes may share a common mechanistic origin.


Subject(s)
Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/metabolism , Membrane Fusion/physiology , Arginine/metabolism , Arginine/physiology , Biological Transport , Cell Membrane/metabolism , Kinetics , Lipid Bilayers/chemistry , Membrane Fusion/drug effects , Membranes/metabolism , Molecular Dynamics Simulation , Peptides/chemistry , Peptides/physiology , Pseudopodia/metabolism , Pseudopodia/physiology
3.
J Chem Phys ; 148(22): 222813, 2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29907056

ABSTRACT

We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.

4.
Inorg Chem ; 57(3): 951-962, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29363964

ABSTRACT

Redox potentials of the Pt(IV) complexes, such as satraplatin, tetraplatin, and several others, are determined at the density functional theory (DFT) level (with B3LYP, ω-B97XD, PBE1PBE, TPSSTPSS, M06-L, M11-L, and MN12-L functionals) and compared with post-Hartree-Fock methods MP2 and CCSD(T). Calculations are performed in water solution employing an implicit solvation model. The impact of replacement of a chloro ligand by a water molecule (hydration in the equatorial plane of the complexes) is also explored. Furthermore, an influence of solvent pH on the magnitude of the redox potentials is discussed for such hydrated complexes. The obtained results are compared with available experimental data leading to a root-mean-square deviation (RMSD) of ca. 0.23 V, using the CCSD(T)/6-31+G(d)/IEF-PCM/scaled-UAKS level. Distribution of the electron density is analyzed at the B3LYP/6-311++G(2df,2pd) level. Also, a correlation between binding energies of axial ligands and the redox potential is demonstrated. Since the Pt(IV) complexes are considered in the framework of anticancer treatment, possible reducing agents in bioenvironment are searched. From this reason, the reduction potential of different protonation states of ascorbic acid is also presented.

5.
J Phys Chem B ; 120(1): 143-53, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26673566

ABSTRACT

Ab initio free energy calculations of guanidinium pairing in aqueous solution confirm the counterintuitive conjecture that the like-charge ion pair is thermodynamically stable. Transferring the guanidinium pair to the inside of a POPC lipid bilayer, like-charge ion pairing is found to occur also inside the membrane defect. It is found to contribute to the nonadditivity of ion transfer, thereby facilitating the presence of ions inside the bilayer. The effect is quantified by free energy decomposition and comparison with ammonium ions, which do not form a stable pair. The presence of two charges inside the center of the bilayer leads to the formation of a pore. Potential consequences for cell penetrating peptides and ion conduction are drawn.


Subject(s)
Guanidine/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Molecular Dynamics Simulation , Quantum Theory , Thermodynamics , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...