Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1138048, 2023.
Article in English | MEDLINE | ID: mdl-37063177

ABSTRACT

The two-component system (TCS) genes are involved in a wide range of physiological processes in prokaryotes and eukaryotes. In plants, the TCS elements help in a variety of functions, including cell proliferation, response to abiotic and biotic stresses, leaf senescence, nutritional signaling, and division of chloroplasts. Three different kinds of proteins make up the TCS system in plants. These are known as HKs (histidine kinases), HPs (histidine phosphotransfer), and RRs (response regulators). We investigated the genome of Gossypium raimondii and discovered a total of 59 GrTCS candidates, which include 23 members of the HK family, 8 members of the HP family, and 28 members of the RR family. RR candidates are further classified as type-A (6 members), type-B (11 members), type-C (2 members), and pseudo-RRs (9 members). The GrTCS genes were analyzed in comparison with the TCS components of other plant species such as Arabidopsis thaliana, Cicer arietinum, Sorghum bicolor, Glycine max, and Oryza sativa. This analysis revealed both conservation and changes in their structures. We identified 5 pairs of GrTCS syntenic homologs in the G. raimondii genome. All 59 TCS genes in G. raimondii are located on all thirteen chromosomes. The GrTCS promoter regions have several cis-regulatory elements, which function as switches and respond to a wide variety of abiotic stresses. RNA-seq and real-time qPCR analysis showed that the majority of GrTCS genes are differentially regulated in response to salt and cold stress. 3D structures of GrTCS proteins were predicted to reveal the specific function. GrTCSs were docked with abscisic acid to assess their binding interactions. This research establishes the groundwork for future functional studies of TCS elements in G. raimondii, which will further focus on stress resistance and overall development.

2.
Molecules ; 27(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35408576

ABSTRACT

Biofilm control by essential oil (EO) application has recently increased to preclude biofilm production on foods and environmental surfaces. In this work, the anti-biofilm effects of garlic and thyme essential oils using the minimum inhibitory concentration (MIC) method against Salmonella typhimurium recovered from different abattoir samples were investigated along with the virulence genes (InvA, SdiA and Stn genes), and the antimicrobial susceptibility profile of S. typhimurium as well. The obtained results revealed that S. typhimurium contaminated abattoir samples to varying degrees. The InvA gene was investigated in all isolates, whereas the SdiA and Stn genes were observed in four and three isolates, respectively. Utilizing the disc diffusion method, S. typhimurium isolates demonstrated substantial resistance to most of the examined antibiotics with a high multiple antibiotic resistance index. S. typhimurium isolates demonstrated biofilm formation abilities to various degrees at varied temperatures levels (4 °C and 37 °C). In conclusion, the obtained samples from the research area are regarded as a potential S. typhimurium contamination source. Furthermore, garlic essential oil (GEO) has more potential to inhibit S. typhimurium biofilm at different sub-minimum inhibitory concentrations as compared to thyme essential oil (TEO). Therefore, these EOs are considered as potential natural antibacterial options that could be applied in food industry.


Subject(s)
Garlic , Oils, Volatile , Thymus Plant , Anti-Bacterial Agents/pharmacology , Biofilms , Microbial Sensitivity Tests , Oils, Volatile/pharmacology , Salmonella typhimurium/genetics
3.
Sci Rep ; 8(1): 3116, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29449667

ABSTRACT

G-quadruplex (G4) is a DNA secondary structure that has been found to play regulatory roles in the genome. The identification of G4-forming sequences is important to study the specific structure-function relationships of such regions. In the present study, we developed a method for identification of G4 clusters on genomic DNA by high-throughput sequencing of genomic DNA amplified via whole-genome amplification (WGA) in the presence of a G4 ligand. The G4 ligand specifically bound to G4 structures on genomic DNA; thus, DNA polymerase was arrested on the G4 structures stabilised by G4 ligand. We utilised the telomestatin derivative L1H1-7OTD as a G4 ligand and demonstrated that the efficiency of amplification of the G4 cluster regions was lower than that of the non-G4-forming regions. By high-throughput sequencing of the WGA products, 9,651 G4 clusters were identified on human genomic DNA. Among these clusters, 3,766 G4 clusters contained at least one transcriptional start site, suggesting that genes are regulated by G4 clusters rather than by one G4 structure.


Subject(s)
G-Quadruplexes , High-Throughput Nucleotide Sequencing/methods , Oxazoles/pharmacology , DNA/analysis , DNA/genetics , DNA-Directed DNA Polymerase/metabolism , Genome, Human , Genomic Instability , Humans , Ligands , Nucleic Acid Synthesis Inhibitors/pharmacology , Transcription, Genetic
4.
Anal Chem ; 88(14): 7101-7, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27351368

ABSTRACT

DNA methylation has been proposed as one of the promising biomarkers for cancer diagnosis. In this study, we developed a DNA methylation detection system utilizing G-quadruplex and i-motif-forming sequences that requires neither sodium bisulfite treatment nor methylated DNA ligands. We hypothesized that G-quadruplex and i-motif structures would be stabilized by DNA methylation and arrest DNA polymerase activity during quantitative polymerase chain reaction (qPCR). The PCR products from VEGF, RET G-quadruplex, and i-motif-forming sequences were used as templates and analyzed by qPCR. Our results indicated that the initial elongation efficiency of PCR decreased with increasing DNA methylation levels in the G-quadruplex and i-motif-forming sequences. Moreover, we demonstrated that the initial elongation efficiency of PCR decreased with increased DNA methylation of the VEGF region on genomic DNA. These results indicated that DNA methylation of the G-quadruplex and i-motif-forming sequences on genomic DNA can be detected by qPCR.


Subject(s)
DNA Methylation/genetics , DNA/genetics , G-Quadruplexes , Polymerase Chain Reaction/methods , HeLa Cells , Human Umbilical Vein Endothelial Cells , Humans , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-ret/genetics , Vascular Endothelial Growth Factor A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...