Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 19(4): 2620-2626, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30908917

ABSTRACT

Nanoscale field-effect transistors (FETs) represent a unique platform for real time, label-free transduction of biochemical signals with unprecedented sensitivity and spatiotemporal resolution, yet their translation toward practical biomedical applications remains challenging. Herein, we demonstrate the potential to overcome several key limitations of traditional FET sensors by exploiting bioactive hydrogels as the gate material. Spatially defined photopolymerization is utilized to achieve selective patterning of polyethylene glycol on top of individual graphene FET devices, through which multiple biospecific receptors can be independently encapsulated into the hydrogel gate. The hydrogel-mediated integration of penicillinase was demonstrated to effectively catalyze enzymatic reaction in the confined microenvironment, enabling real time, label-free detection of penicillin down to 0.2 mM. Multiplexed functionalization with penicillinase and acetylcholinesterase has been demonstrated to achieve highly specific sensing. In addition, the microenvironment created by the hydrogel gate has been shown to significantly reduce the nonspecific binding of nontarget molecules to graphene channels as well as preserve the encapsulated enzyme activity for at least one week, in comparison to free enzymes showing significant signal loss within one day. This general approach presents a new biointegration strategy and facilitates multiplex detection of bioanalytes on the same platform, which could underwrite new advances in healthcare research.


Subject(s)
Biosensing Techniques/methods , Nanotechnology/methods , Penicillinase/chemistry , Penicillins/isolation & purification , Biomedical Research/trends , Graphite/chemistry , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Penicillins/chemistry , Polyethylene Glycols/chemistry , Transistors, Electronic
2.
Sci Rep ; 6: 21858, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26908346

ABSTRACT

Water decontamination and oil/water separation are principal motives in the surge to develop novel means for sustainability. In this prospect, supplying clean water for the ecosystems is as important as the recovery of the oil spills since the supplies are scarce. Inspired to design an engineering material which not only serves this purpose, but can also be altered for other applications to preserve natural resources, a facile template-free process is suggested to fabricate a superporous, superhydrophobic ultra-thin graphite sponge. Moreover, the process is designed to be inexpensive and scalable. The fabricated sponge can be used to clean up different types of oil, organic solvents, toxic and corrosive contaminants. This versatile microstructure can retain its functionality even when pulverized. The sponge is applicable for targeted sorption and collection due to its ferromagnetic properties. We hope that such a cost-effective process can be embraced and implemented widely.

3.
Sci Rep ; 5: 8781, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25740298

ABSTRACT

Highly monodisperse porous silicon nanospheres (MPSSs) are synthesized via a simple and scalable hydrolysis process with subsequent surface-protected magnesiothermic reduction. The spherical nature of the MPSSs allows for a homogenous stress-strain distribution within the structure during lithiation and delithiation, which dramatically improves the electrochemical stability. To fully extract the real performance of the MPSSs, carbon nanotubes (CNTs) were added to enhance the electronic conductivity within the composite electrode structure, which has been verified to be an effective way to improve the rate and cycling performance of anodes based on nano-Si. The Li-ion battery (LIB) anodes based on MPSSs demonstrate a high reversible capacity of 3105 mAh g(-1). In particular, reversible Li storage capacities above 1500 mAh g(-1) were maintained after 500 cycles at a high rate of C/2. We believe this innovative approach for synthesizing porous Si-based LIB anode materials by using surface-protected magnesiothermic reduction can be readily applied to other types of SiOx nano/microstructures.

4.
Sci Rep ; 5: 8246, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25655007

ABSTRACT

The need for more energy dense and scalable Li-ion battery electrodes has become increasingly pressing with the ushering in of more powerful portable electronics and electric vehicles (EVs) requiring substantially longer range capabilities. Herein, we report on the first synthesis of nano-silicon paper electrodes synthesized via magnesiothermic reduction of electrospun SiO2 nanofiber paper produced by an in situ acid catalyzed polymerization of tetraethyl orthosilicate (TEOS) in-flight. Free-standing carbon-coated Si nanofiber binderless electrodes produce a capacity of 802 mAh g(-1) after 659 cycles with a Coulombic efficiency of 99.9%, which outperforms conventionally used slurry-prepared graphite anodes by over two times on an active material basis. Silicon nanofiber paper anodes offer a completely binder-free and Cu current collector-free approach to electrode fabrication with a silicon weight percent in excess of 80%. The absence of conductive powder additives, metallic current collectors, and polymer binders in addition to the high weight percent silicon all contribute to significantly increasing capacity at the cell level.

5.
Nanoscale ; 7(16): 7051-5, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25712745

ABSTRACT

For the first time, SiO2-coated sulfur particles (SCSPs) were fabricated via a facile two-step wet chemical process for application as a novel lithium-sulfur cathode material. With the addition of mildly reduced graphene oxide (mrGO), SCSPs demonstrate even greater cycling stability, maintaining over 700 mA h g(-1) after the 50(th) cycle.

6.
Sci Rep ; 4: 5623, 2014 Jul 08.
Article in English | MEDLINE | ID: mdl-25001507

ABSTRACT

Herein, porous nano-silicon has been synthesized via a highly scalable heat scavenger-assisted magnesiothermic reduction of beach sand. This environmentally benign, highly abundant, and low cost SiO2 source allows for production of nano-silicon at the industry level with excellent electrochemical performance as an anode material for Li-ion batteries. The addition of NaCl, as an effective heat scavenger for the highly exothermic magnesium reduction process, promotes the formation of an interconnected 3D network of nano-silicon with a thickness of 8-10 nm. Carbon coated nano-silicon electrodes achieve remarkable electrochemical performance with a capacity of 1024 mAhg(-1) at 2 Ag(-1) after 1000 cycles.

7.
Small ; 10(16): 3389-96, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-24753292

ABSTRACT

In this work, we report the synthesis of an three-dimensional (3D) cone-shape CNT clusters (CCC) via chemical vapor deposition (CVD) with subsequent inductively coupled plasma (ICP) treatment. An innovative silicon decorated cone-shape CNT clusters (SCCC) is prepared by simply depositing amorphous silicon onto CCC via magnetron sputtering. The seamless connection between silicon decorated CNT cones and graphene facilitates the charge transfer in the system and suggests a binder-free technique of preparing lithium ion battery (LIB) anodes. Lithium ion batteries based on this novel 3D SCCC architecture demonstrates high reversible capacity of 1954 mAh g(-1) and excellent cycling stability (>1200 mAh g(-1) capacity with ≈ 100% coulombic efficiency after 230 cycles).

8.
Sci Rep ; 4: 4605, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24732245

ABSTRACT

Herein, SiO2 nanotubes have been fabricated via a facile two step hard-template growth method and evaluated as an anode for Li-ion batteries. SiO2 nanotubes exhibit a highly stable reversible capacity of 1266 mAhg(-1) after 100 cycles with negligible capacity fading. SiO2 NT anodes experience a capacity increase throughout the first 80 cycles through Si phase growth via SiO2 reduction. The hollow morphology of the SiO2 nanotubes accommodates the large volume expansion experienced by Si-based anodes during lithiation and promotes preservation of the solid electrolyte interphase layer. The thin walls of the SiO2 nanotubes allow for effective reduction in Li-ion diffusion path distance and, thus, afford a favorable rate cyclability. The high aspect ratio character of these nanotubes allow for a relatively scalable fabrication method of nanoscale SiO2-based anodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...