Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anticancer Agents Med Chem ; 24(2): 77-95, 2024.
Article in English | MEDLINE | ID: mdl-37962049

ABSTRACT

Cyclooxygenases (COXs) play a pivotal role in inflammation, a complex phenomenon required in human defense, but also involved in the emergence of insidious human disorders. Currently-used COX-1 inhibitors (Non-Steroidal Anti-Inflammatory Drugs-NSAIDs), as the most frequent choices for the treatment of chronic inflammatory diseases, have been identified to be associated with a variety of adverse drug reactions, especially dyspepsia, as well as peptic ulcer, which lead to diminished output. Moreover, the structural similarities of COX- 1 and -2, along with the availability of comprehensive information about the three-dimensional structure of COX- 2, co-crystallized with various inhibitors, search selective COX-2 inhibitors a formidable challenge. COX-2 inhibitors were shown to minimize the incidence of metastasis in cancer patients when administered preoperatively. Developing selective COX-2 inhibitors to tackle both cancer and chronic inflammatory illnesses has been identified as a promising research direction in recent decades. Identifying innovative scaffolds to integrate as the major component of future COX-2 inhibitors is critical in this regard. The presence of a central, α, ß-unsaturated carbonyl- containing scaffold, as a characteristic structural pattern in many selective COX-2 inhibitors, along with a huge count of chalcone-based anticancer agents representing the basic idea of this review; providing a survey of the most recently published literature concerning development of chalcone analogs as novel COX-2 inhibitors until 2022 with efficient anticancer activity. A brief overview of the most recent developments concerning structure- activity relationship insights and mechanisms is also reported, helping pave the road for additional investigation.


Subject(s)
Chalcones , Neoplasms , Humans , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclooxygenase 2 , Neoplasms/drug therapy
2.
Eur J Med Chem ; 261: 115866, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37862815

ABSTRACT

Dual cyclooxygenase 2/15-lipoxygenase inhibitors constitute a valuable alternative to classical non-steroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 (cyclooxygenase-2) inhibitors for the treatment of inflammatory diseases, as well as preventing the cancer. Indeed, these latter present diverse side effects, which are reduced or absent in dual-acting agents. In this review, COX-2 and 15-LOX (15-lipoxygenase) pathways are first described in order to highlight the therapeutic interest of designing such compounds. Various structural families of dual inhibitors are illustrated. This study discloses various structural families of dual 15-LOX/COX-2 inhibitors, thus pave the way to design potentially-active anticancer agents with balanced dual inhibition of these enzymes.


Subject(s)
Cyclooxygenase 2 Inhibitors , Neoplasms , Humans , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2/metabolism , Arachidonate 15-Lipoxygenase , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/chemistry , Neoplasms/drug therapy , Neoplasms/chemically induced , Arachidonate 5-Lipoxygenase/metabolism , Cyclooxygenase 1
3.
Med Chem Res ; 32(3): 495-505, 2023.
Article in English | MEDLINE | ID: mdl-36713891

ABSTRACT

The present study was aimed at the synthesis and evaluation of a new series of benzo[4,5]imidazo[1,2-a]pyrimidine having a methylsulfonyl group as COX-2 (cyclooxygenase-2) inhibitor pharmacophore. Molecular modeling studies were performed using the Autodock program, and the results demonstrated that methylsulfonyl pharmacophore was adequately placed into the COX-2 active site. The in vitro and in vivo COX-2 inhibitory effects were also evaluated. In the in vitro assay, all newly synthesized compounds showed moderate to good selectivity for the inhibition of the COX-2 enzyme. However, compound 2-(4-(methylsulfonyl) phenyl)-4-phenylbenzo[4,5]imidazo[1,2-a]pyrimidine (5a) showed the highest COX-2 inhibitory effect (IC50: 0.05 µM) even more than celecoxib as the reference drug (IC50: 0.06 µM). For the in vivo study, the writing reflex test was used, and the results indicated that all synthesized compounds had well dose-dependent anti-nociceptive activity. The in vivo evaluation also showed that compound 2-(4-(methylsulfonyl)phenyl)-4-(p-tolyl)benzo[4,5]imidazo[1,2-a]pyrimidine (5d) had the highest activity in the writing reflex test (ED50: 5.75 mg/kg). In addition, the cytotoxicity effects of the synthesized compounds were tested on MCF-7 breast cancer cells, and all compounds showed considerable inhibitory results.

4.
Mediators Inflamm ; 2023: 5156320, 2023.
Article in English | MEDLINE | ID: mdl-36687217

ABSTRACT

Background: Breast and ovarian cancers are two common malignancies in women and a leading cause of death globally. The aim of the present study was to explore the effects of a novel chalcone derivative 1-(4-(methylsulfonyl)phenyl)-3-(phenylthio)-3-(p-tolyl)propane-1-one (MPP) individually or combined with curcumin, a well-known herbal medicine with anticancer properties, as a new combination therapy on inflammatory pathways in breast and ovarian cancer cell lines. Methods: LPS-induced NF-κB DNA-binding activity and the levels of proinflammatory cytokines were measured in the MPP- and MPP-curcumin combination-treated MDA-MB-231 and SKOV3 cells by ELISA-based methods. The expression of COX2, INOS, and MMP9 genes and nitrite levels was also evaluated by real-time qRT-PCR and Griess method, respectively. IκB levels were evaluated by Western blotting. Results: MPP significantly inhibited the DNA-binding activity of NF-κB in each cell line and subsequently suppressed the expression of downstream genes including COX2, MMP9, and INOS. The levels of proinflammatory cytokines, as well as NO, were also decreased in response to MPP. All the effects of MPP were enhanced by the addition of curcumin. MPP, especially when combined with curcumin, caused a remarkable increase in the concentration of IκB. Conclusion: MPP and its coadministration with curcumin effectively reduced the activity of the NF-κB signaling pathway, leading to a reduced inflammatory response in the environment of cancer cells. Thus, MPP, either alone or combined with curcumin, might be considered an effective remedy for the suppression of inflammatory processes in breast and ovarian cancer cells.


Subject(s)
Chalcones , Curcumin , Ovarian Neoplasms , Female , Humans , NF-kappa B/metabolism , Matrix Metalloproteinase 9 , Cyclooxygenase 2 , Cytokines/metabolism , I-kappa B Proteins , Ovarian Neoplasms/drug therapy
5.
Anticancer Agents Med Chem ; 23(2): 192-200, 2023.
Article in English | MEDLINE | ID: mdl-35692149

ABSTRACT

BACKGROUND: Cancer is the second leading cause of death worldwide after heart disease. A vast number of studies indicated that selective cyclooxygenase-2 (COX-2) inhibitors could be chemopreventive against different types of cancer because the expression of COX-2 is increased. Therefore, to develop new therapeutics for cancer, the design and synthesis of new COX-2 inhibitors with few side effects seem attractive as anti-cancer agents. OBJECTIVE: Some of the well-known drugs that have been widely used for some time have been removed from the market due to the cardiac side effects they cause, so there is a need to introduce a scaffold that can inhibit COX-2 with high potency and low side effects. This study aimed to introduce a new COX-2 inhibitor structure. METHODS: A new series of ß-aryl-ß-mercapto ketones possessing a methylsulfonyl pharmacophore was synthesized and evaluated as selective COX-2 inhibitors. In-vitro COX-1 and COX-2 inhibition effects of these compounds were evaluated, and molecular modeling was examined. Also, the antiplatelet aggregation activity of the synthesized compounds was tested. RESULTS: In-vitro COX-1 and COX-2 inhibition assays indicated that almost all newly synthesized compounds showed selectivity for COX-2 with IC50 values in the 0.07-0.22 µM range and COX-2 selectivity indexes in the 170 to 703.7 range. Among the tested compounds 1-(4-(methylsulfonyl)phenyl)-3-phenyl-3-(phenylthio)propan-1-one (4a), 3-(3,4- dimethoxyphenyl)-1-(4-(methylsulfonyl)phenyl)-3-(phenylthio)propan-1-one (4g) and 3-(4-fluorophenyl)-1-(4-(methyl sulfonyl)phenyl)-3-(phenylthio)propan-1-one (4h) were the most potent COX-2 inhibitors and 3-(3,4- dimethoxyphenyl)-1-(4-(methylsulfonyl)phenyl)-3-(phenylthio)propan-1-one had the highest selectivity index for COX-2 enzyme inhibitory activity. The Anti-platelet aggregation activity results indicated that the compound 1-(4- (methylsulfonyl)phenyl)-3-(phenylthio)-3-(p-tolyl)propan-1-one (4b) possesses the strong anti-platelet activity. Our molecular modeling studies also indicated that the methylsulfonyl pharmacophore group is placed into the adjunct pocket in the COX-2 active site and forms hydrogen bond interactions with NH of Arg513 and NH of His90. CONCLUSION: In brief, all designed and synthesized compounds showed moderate to good COX-2 inhibitory effects and showed good anti-platelet activity. Therefore, these compounds have the potential for further research into developing anti-cancer agents.


Subject(s)
Antineoplastic Agents , Cyclooxygenase 2 Inhibitors , Humans , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2/metabolism , Structure-Activity Relationship , Biphenyl Compounds , Antineoplastic Agents/pharmacology , Molecular Docking Simulation , Drug Design , Molecular Structure
6.
Iran J Pharm Res ; 21(1): e134338, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36896317

ABSTRACT

Background: As a chronic joint condition, osteoarthritis (OA) is a common problem among older people. Pain, aching, stiffness, swelling, decreased flexibility, reduced function, and disability are the symptoms of arthritis. Objectives: In this study, we tested the extracts of Ziziphus jujuba (ZJE) and Boswellia serrata (BSE) to reduce OA symptoms as an alternative treatment. Methods: NMRI mice were administered an intra-articular injection of monosodium iodoacetate (MIA; 1 mg/10 mL) in the left knee joint cavity for the induction of OA. Hydroalcoholic extracts of ZJE (250 and 500 mg/kg), BSE (100 and 200 mg/kg), and combined ZJE and BSE were orally administered daily for 21 days. Following behavioral tests, plasma samples were collected to detect inflammatory factors. To screen for general toxicity, acute oral toxicity was evaluated. Results: Oral administration of all the hydroalcoholic extracts significantly increased the locomotor activity, pixel values of the foot-print area, paw withdrawal threshold, the latency of the withdrawal response to heat stimulation, and decreased the difference between pixel values of hind limbs compared to the vehicle group. Also, the elevated levels of IL-1ß, IL-6, and TNF-α were reduced. As tested in this study, ZJE and BSE were practically nontoxic and had a high degree of safety. Conclusions: This study demonstrated that the oral administration of ZJE and BSE slows the progression of OA through anti-nociceptive and anti-inflammatory properties. Oral co-administration of ZJE and BSE extracts can be used as herbal medicine to inhibit OA progression.

7.
Iran J Pharm Res ; 20(4): 229-237, 2021.
Article in English | MEDLINE | ID: mdl-35194442

ABSTRACT

Cancers in terms of morbidity and mortality are one of the major universal issues. New compounds of anticancer agents based on ß-aryl-ß-mercapto ketones scaffold possessing piperidinylethoxy or morpholinylethoxy groups were synthesized and evaluated as cytotoxic agents. Cytotoxic effects of synthesized compounds were measured against MCF-7, human ER-positive breast cancer cell lines, using MTT assay. The results indicated that all compounds had high cytotoxic activity on MCF-7 cancerous cells, even more than the reference drug Tamoxifen. Among them, compounds 3-(4-(2-morpholinoethoxy)phenyl)-1-phenyl-3-(phenylthio)propan-1-one (4a) and 1-(4-methoxyphenyl)-3-(3-(2-morpholinoethoxy)phenyl)-3-(phenylthio)propan-1-one (4h) had no significant cytotoxic effects on normal cells compared to Tamoxifen. Our results also indicated that adding tertiary amine basic side chain, found in Tamoxifen drug, to 1,3-diphenyl-3-(phenylthio)propan-1-ones improves the cytotoxic effects of these compounds on breast cancer cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...