Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci Technol ; 52(10): 6435-44, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26396388

ABSTRACT

Due to the rheological and structural basis of texture perceived in semisolid foods, the aim of this work was to study the effects of two thickening agents, on rheology and microstructure of soy protein desserts. As rheological parameter values may not be enough to explain the possible perceived texture differences, the effect of composition on two instrumental indexes of oral consistency (apparent viscosity at 50 s(-1) and complex dynamic viscosity at 8 Hz) was also studied. Samples were prepared at two soy protein isolate (SPI) concentrations (6 and 8 % w/w), each with four modified starch concentrations (2, 2.5, 3 and 3.5 % w/w) or four Carboxymethyl cellulose (CMC) concentrations (0.3, 0.5, 0.7 and 0.9 % w/w). Two more samples without added thickener were prepared as control samples. The flow curves of all systems showed a typical shear-thinning behaviour and observable hysteresis loops. Control sample flow fitted well with the Ostwald-de Waele model and the flow of samples with thickener to the Herschel-Bulkley model. Viscoelastic properties of samples ranged from fluid-like to weak gel, depending on thickener and SPI concentrations. Starch-based samples exhibited a globular structure with SPI aggregates distributed among starch granules. In CMC-based samples, a coarse stranded structure with SPI aggregates partially embedded was observed. Variation of the two thickness index values with composition showed a similar trend with good correlation between them (R(2) = 0.92). Soy desserts with different composition but with similar rheological behaviour or instrumental thickness index values can be obtained.

2.
J Agric Food Chem ; 54(23): 8862-8, 2006 Nov 15.
Article in English | MEDLINE | ID: mdl-17090135

ABSTRACT

Decreasing the fat content of a food, while maintaining the same aroma content, changes both aroma release (due to partition effects) and the viscosity of the food. To understand the relative contribution of these two factors on flavor perception, a series of flavored emulsions were prepared to control aroma release and viscosity using different aroma, oil, and hydroxypropyl methyl cellulose (HPMC) contents. Samples were formulated to deliver the same aroma-release in vitro and in vivo, and their viscosity was measured using the Kokini oral shear stress parameter. Despite the in vivo aroma release being constant, there were perceptual differences between the samples, and the flavor intensity decreased as in-mouth viscosity increased. For these iso release samples, the Kokini oral shear stress parameter correlated well with the decrease in perception, suggesting that there may be a viscosity stimulus or that the viscosity affects release of tastant and hinders aroma-taste interactions.


Subject(s)
Fats , Food , Taste , Adult , Aged , Emulsions , Fatty Acids, Monounsaturated , Female , Humans , Hypromellose Derivatives , Male , Methylcellulose/analogs & derivatives , Middle Aged , Plant Oils , Rapeseed Oil , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...