Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Animal ; 18(5): 101146, 2024 May.
Article in English | MEDLINE | ID: mdl-38643733

ABSTRACT

Feed utilization efficiency is an important trait in dairy production playing a significant role in reducing feed costs and lowering methane emission. One of the metrics used to measure feed efficiency in dairy cows is residual feed intake (RFI). This metric requires routine measurement of feed intake. Since there is a positive high correlation between heat production and carbon dioxide (CO2) production on the one hand and heat production and efficiency on the other hand, residual carbon dioxide (RCO2) might be a useful metric to improve feed efficiency. The objectives of this study were to model the trajectories of RCO2 and RFI as well as to estimate their repeatabilities and correlations at different stages of lactation. Daily CO2 output and feed intake were recorded from 46 primiparous Nordic Red dairy cows using two Greenfeed Emissions Monitoring™ systems from 2 to 305 days in milk (DIM). Edited data comprised 5 995 daily averages. To calculate predicted values of CO2 and DM intake (DMI), prediction models were developed by fitting multiple regression models to observations. Subsequently, RCO2 and RFI were calculated by subtracting predicted values of CO2 and DMI from their corresponding actual observations. A random regression bivariate model was fitted to estimate repeatabilities and animal correlations within lactation at different DIMs between RCO2 and RFI traits. The model fitted included fixed effects of year-month of recording, lactation month, fixed regressions as well as random regressions for the animal effect. The residual variance was considered to be heterogeneous. Repeatabilities and animal correlations of RCO2 and RFI between selected DIM (for every 30 DIM i.e., 6, 36,…, 246 and 276) were calculated. Repeatability of RCO2 was high at the beginning of lactation (0.72 at DIM 6) and decreased around the peak of milk production (0.27 at DIM 96) and again increased gradually toward the end of lactation. Similarly, RFI also had high repeatability at the beginning (0.86 at DIM 6); however, it decreased in mid-lactation (0.37 at DIM 156) and then increased toward the end of lactation. Animal correlations between RCO2 and RFI were moderate to high on the same DIM and ranged from 0.37 to 0.88. Overall, we found that animals with higher CO2 production than expected also consume more DMI than expected, but the moderate correlation between RCO2 and RFI found in this study calls for more research to assess the potential of RCO2 to become a new feed efficiency metric.


Subject(s)
Animal Feed , Carbon Dioxide , Dairying , Eating , Lactation , Animals , Cattle/physiology , Carbon Dioxide/analysis , Female , Lactation/physiology , Dairying/methods , Animal Feed/analysis , Longitudinal Studies , Milk/chemistry , Milk/metabolism
2.
J Dairy Sci ; 105(9): 7462-7481, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35931475

ABSTRACT

Manure nitrogen (N) from cattle contributes to nitrous oxide and ammonia emissions and nitrate leaching. Measurement of manure N outputs on dairy farms is laborious, expensive, and impractical at large scales; therefore, models are needed to predict N excreted in urine and feces. Building robust prediction models requires extensive data from animals under different management systems worldwide. Thus, the study objectives were (1) to collate an international database of N excretion in feces and urine based on individual lactating dairy cow data from different continents; (2) to determine the suitability of key variables for predicting fecal, urinary, and total manure N excretion; and (3) to develop robust and reliable N excretion prediction models based on individual data from lactating dairy cows consuming various diets. A raw data set was created based on 5,483 individual cow observations, with 5,420 fecal N excretion and 3,621 urine N excretion measurements collected from 162 in vivo experiments conducted by 22 research institutes mostly located in Europe (n = 14) and North America (n = 5). A sequential approach was taken in developing models with increasing complexity by incrementally adding variables that had a significant individual effect on fecal, urinary, or total manure N excretion. Nitrogen excretion was predicted by fitting linear mixed models including experiment as a random effect. Simple models requiring dry matter intake (DMI) or N intake performed better for predicting fecal N excretion than simple models using diet nutrient composition or milk performance parameters. Simple models based on N intake performed better for urinary and total manure N excretion than those based on DMI, but simple models using milk urea N (MUN) and N intake performed even better for urinary N excretion. The full model predicting fecal N excretion had similar performance to simple models based on DMI but included several independent variables (DMI, diet crude protein content, diet neutral detergent fiber content, milk protein), depending on the location, and had root mean square prediction errors as a fraction of the observed mean values of 19.1% for intercontinental, 19.8% for European, and 17.7% for North American data sets. Complex total manure N excretion models based on N intake and MUN led to prediction errors of about 13.0% to 14.0%, which were comparable to models based on N intake alone. Intercepts and slopes of variables in optimal prediction equations developed on intercontinental, European, and North American bases differed from each other, and therefore region-specific models are preferred to predict N excretion. In conclusion, region-specific models that include information on DMI or N intake and MUN are required for good prediction of fecal, urinary, and total manure N excretion. In absence of intake data, region-specific complex equations using easily and routinely measured variables to predict fecal, urinary, or total manure N excretion may be used, but these equations have lower performance than equations based on intake.


Subject(s)
Lactation , Nitrogen , Animals , Cattle , Diet/veterinary , Dietary Fiber/metabolism , Female , Manure , Milk/chemistry , Nitrogen/metabolism , Urea/metabolism
3.
J Dairy Sci ; 105(6): 5004-5023, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35450714

ABSTRACT

Estimating the efficiency of N utilization for milk production (MNE) of individual cows at a large scale is difficult, particularly because of the cost of measuring feed intake. Nitrogen isotopic discrimination (Δ15N) between the animal (milk, plasma, or tissues) and its diet has been proposed as a biomarker of the efficiency of N utilization in a range of production systems and ruminant species. The aim of this study was to assess the ability of Δ15N to predict the between-animal variability in MNE in dairy cows using an extensive database. For this, 20 independent experiments conducted as either changeover (n = 14) or continuous (n = 6) trials were available and comprised an initial data set of 1,300 observations. Between-animal variability was defined as the variation observed among cows sharing the same contemporary group (CG; individuals from the same experimental site, sampling period, and dietary treatment). Milk N efficiency was calculated as the ratio between mean milk N (grams of N in milk per day) and mean N intake (grams of N intake per day) obtained from each sampling period, which lasted 9.0 ± 9.9 d (mean ± SD). Samples of milk (n = 604) or plasma (n = 696) and feeds (74 dietary treatments) were analyzed for natural 15N abundance (δ15N), and then the N isotopic discrimination between the animal and the dietary treatment was calculated (Δ15n = δ15Nanimal - δ15Ndiet). Data were analyzed through mixed-effect regression models considering the experiment, sampling period, and dietary treatment as random effects. In addition, repeatability estimates were calculated for each experiment to test the hypothesis of improved predictions when MNE and Δ15N measurements errors were lower. The considerable protein mobilization in early lactation artificially increased both MNE and Δ15N, leading to a positive rather than negative relationship, and this limited the implementation of this biomarker in early lactating cows. When the experimental errors of Δ15N and MNE decreased in a particular experiment (i.e., higher repeatability values), we observed a greater ability of Δ15N to predict MNE at the individual level. The predominant negative and significant correlation between Δ15N and MNE in mid- and late lactation demonstrated that on average Δ15N reflects MNE variations both across dietary treatments and between animals. The root mean squared prediction error as a percentage of average observed value was 6.8%, indicating that the model only allowed differentiation between 2 cows in terms of MNE within a CG if they differed by at least 0.112 g/g of MNE (95% confidence level), and this could represent a limitation in predicting MNE at the individual level. However, the one-way ANOVA performed to test the ability of Δ15N to differentiate within-CG the top 25% from the lowest 25% individuals in terms of MNE was significant, indicating that it is possible to distinguish extreme animals in terms of MNE from their N isotopic signature, which could be useful to group animals for precision feeding.


Subject(s)
Lactation , Milk , Animal Feed/analysis , Animals , Biomarkers , Cattle , Diet/veterinary , Female , Lactation/metabolism , Milk/chemistry , Nitrogen/metabolism , Nitrogen Isotopes/analysis , Ruminants/metabolism
4.
J Dairy Sci ; 105(4): 3032-3048, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35123782

ABSTRACT

The objective of this study was to determine the effects of milk fat depression induced by supplementing conjugated linoleic acid (CLA; trans-10,cis-12 and cis-9,trans-11 CLA) or feeding a higher starch and oil-containing diet (HSO) on metabolic changes in dairy cows after calving. The main hypothesis was that the 2 strategies to decrease milk fat yield could have different effects on performance, energy balance (EB), and inflammatory status in early lactation. Thirty-three Nordic Red dairy cows were used in a randomized block design from 1 to 112 d of lactation and fed one of the following treatments: control (CON), CLA-supplemented diet, or HSO diet. Dry matter intake and milk yield were measured daily whereas milk composition was measured weekly throughout the experiment. Nutrient digestibility, EB, and plasma hormones and metabolites were measured at 3, 7, 11, and 15 wk of lactation in respiration chambers. The HSO diet led to lower intakes of dry matter, neutral detergent fiber, and gross energy compared with CON and CLA diets. The CLA diet and especially the HSO diet resulted in lower energy-corrected milk yield during the first 7 wk of lactation than those fed CON. The EB was numerically higher for HSO and CLA diets compared with CON at wk 3 and 7. Plasma glucose concentration was higher by the CLA diet at wk 3 and by the HSO diet from wk 3 to 15 compared with CON. Plasma nonesterified fatty acids were higher at wk 3 in the CON group (indicating more lipid mobilization) but decreased thereafter to similar levels with the other groups. The HSO-fed cows had higher plasma ceruloplasmin, paraoxonase, and total bilirubin concentrations in the entire experiment and showed the highest levels of reactive oxygen metabolites. These results suggest an increased inflammatory and oxidative stress state in the HSO cows and probably different regulation of the innate immune system. This study provides evidence that milk fat depression induced by feeding HSO (as well as CLA) decreased milk fat secretion and improved EB compared with CON in early lactation. The increase in plasma glucose and paraoxonase levels with the HSO diet may imply a better ability of the liver to cope with the metabolic demand after parturition. However, the negative effect of HSO on feed intake, and the indication of increased inflammatory and oxidative stress warrant further studies before the HSO feeding strategy could be supported as an alternative to improve EB in early lactation.


Subject(s)
Cattle Diseases , Linoleic Acids, Conjugated , Animals , Cattle , Cattle Diseases/metabolism , Diet/veterinary , Dietary Supplements , Energy Metabolism , Fatty Acids/metabolism , Female , Inflammation/metabolism , Inflammation/veterinary , Lactation/physiology , Linoleic Acids, Conjugated/pharmacology , Milk/metabolism , Oxidative Stress , Rumen/metabolism
5.
J Dairy Sci ; 105(2): 1211-1224, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34799103

ABSTRACT

We evaluated the potential of feeding high-oil rapeseed cake or natural additives as rumen modifiers on enteric methane (CH4) emissions, nutrient utilization, performance, and milk fatty acid (FA) profile of dairy cows. Eight Nordic Red dairy cows averaging (mean ± SD) 81 ± 21 d in milk and 41.0 ± 1.9 kg of milk yield at the beginning of the study were randomly assigned to a replicated 4 × 4 Latin square design with 21-d periods. Treatments comprised grass silage-based diets (45:55 forage to concentrate ratio on dry matter basis) including (1) control containing 19.3% rapeseed meal (CON), (2) CON with full replacement of rapeseed meal with rapeseed cake (RSC), (3) supplementation of CON with 50 g/d of yeast hydrolysate product plus coniferous resin acid-based compound (YHR), and (4) supplementation of CON with 20 g/d of combination of garlic-citrus extract and essential oils in a pellet (GCE). Apparent total-tract digestibility was measured using total collection of feces, and CH4 emissions were measured in respiratory chambers on 4 consecutive days. Data collected during d 17 and 21 in each period were used for ANOVA analysis using a mixed model. Treatments did not affect dry matter intake (DMI), whereas feeding RSC increased crude protein and ether extract digestibility compared with the other diets. Emissions of CH4 per day, per kilogram of DMI, and per kilogram of energy-corrected milk, and gross energy intake were lower for RSC compared with other diets. We found no effect of YHR on daily CH4 emissions, whereas CH4 yield (g of CH4/kg of DMI or as percentage of gross energy intake) decreased with GCE compared with CON. Treatments did not influence energy balance. Further, RSC reduced the proportion of N intake excreted in feces, and YHR improved N balance compared with CON diet. Feeding RSC resulted in greatest yields of milk and energy-corrected milk, and feed efficiency. Relative to the CON diet, RSC decreased saturated FA by 10% in milk fat by increasing cis-monounsaturated FA but also increased the proportion of trans FA. Proportion of odd- and branched-chain FA increased with GCE and YHR compared with CON. We conclude that replacing rapeseed meal by rapeseed cake decreased CH4 emissions, whereas YHR or GCE had no effect on CH4 emissions in this study.


Subject(s)
Brassica napus , Methane , Animals , Cattle , Diet/veterinary , Digestion , Female , Lactation , Milk , Rumen , Silage/analysis , Zea mays
6.
J Dairy Sci ; 103(10): 9090-9095, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32747114

ABSTRACT

Breeding cows for low CH4 emissions requires that the trait is variable and that it can be recorded with low cost from an adequate number of individuals and with high precision, but not necessarily with high accuracy if the trait is measured with high repeatability. The CH4:CO2 ratio in expired breath is a trait often used as a tracer with the production of CO2 predicted from body weight (BW), energy-corrected milk yield, and days of pregnancy. This approach assumes that efficiency of energy utilization for maintenance and production is constant. Data (307 cow-period observations) from 2 locations using the same setup for measuring CH4 and CO2 in respiration chambers were compiled, and observed production of CH4 and CO2 was compared with the equivalent predicted production using 2 different approaches. Carbon dioxide production was predicted using a previously reported model based on metabolic BW and energy-corrected milk production and a currently developed model based on energy requirements and the relationship between observed CO2 and heat production (models 1 and 2, respectively). Animals used were categorized (low, medium, and high efficiency) according to (1) residual feed intake and (2) residual milk production. Model 1 underestimated CH4 production by 15%, whereas model 2 overestimated CH4 by 1.4% for the whole database. Model 1 underestimated CO2 production by 2.8 and 0.9 kg/d for low- and high-efficiency cows, respectively, whereas model 2 underestimated CO2 production by 0.9 kg/d for low-efficient animals but overestimated it by 1.2 kg/d for high-efficiency cows. Efficient cows produce less heat, and consequently CO2, per unit of metabolic body weight and energy-corrected milk than inefficient cows, challenging the use of CO2 as a tracer gas. Because of biased estimates of CO2 production, the models overestimated CH4 production of high-efficiency cows by, on average, 17% relative to low-efficiency cows, respectively. Selecting low CH4-emitting cows using a CO2 tracer method can therefore favor inefficient cows over efficient cows.


Subject(s)
Animal Feed , Carbon Dioxide/metabolism , Cattle/metabolism , Dairying/methods , Diet/veterinary , Methane/biosynthesis , Animals , Body Weight , Eating , Farms , Female , Indicators and Reagents , Milk , Thermogenesis
7.
J Dairy Sci ; 103(9): 7968-7982, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32684452

ABSTRACT

A meta-analysis based on an individual-cow data set was conducted to investigate between-cow variations in the components and measurements of feed efficiency (FE) and to explore the associations among these components. Data were taken from 31 chamber studies, consisting of a total of 841 cow/period observations. The experimental diets were based on grass or corn silages, fresh grass, or a mixture of fresh grass and straw, with cereal grains or by-products as energy supplements, and soybean or canola meal as protein supplements. The average forage-to-concentrate ratio across all diets on a dry matter basis was 56:44. Variance component and repeatability estimates of FE measurements and components were determined using diet, period, and cow within experiment as random effects in mixed procedures of SAS (SAS Institute Inc., Cary, NC). The between-cow coefficient of variation (CV) in gross energy intake (GE; CV = 0.10) and milk energy (El) output as a proportion of GE (El/GE; CV = 0.084) were the largest among all component traits. Similarly, the highest repeatability estimates (≥0.50) were observed for these 2 components. However, the between-cow CV in digestibility (DE/GE), metabolizability [metabolizable energy (ME)/GE], methane yield (CH4E/GE), proportional urinary energy output (UE/GE), and heat production (HP/GE), as well as the efficiency of ME use for lactation (kl), were rather small. The least repeatable component of FE was UE/GE. For FE measurements, the between-cow CV in residual energy-corrected milk (RECM) was larger than for residual feed intake (RFI), suggesting a greater possibility for genetic gain in RECM than in RFI. A high DE/GE was associated with increased CH4E/GE (r = 0.24), HP/GE (r = 0.12), ME/GE (r = 0. 91), energy balance as a proportion of GE (EB/GE; r = 0.35), and kl (r = 0.10). However, no correlation between DE/GE and GE intake or UE/GE was observed. Increased proportional milk energy adjusted to zero energy balance (El(0)/GE) was associated with increases in DE/GE, ME/GE, EB/GE, and kl but decreases in UE/GE, CH4E/GE, and HP/GE, with no effect on GE intake. In conclusion, several mechanisms are involved in the observed differences in FE among dairy cows, and reducing CH4E yield (CH4E/GE) may inadvertently result in reduced GE digestibility. However, the selection of dairy cows with improved energy utilization efficiencies offers an effective approach to lower enteric CH4 emissions.


Subject(s)
Animal Feed , Biological Variation, Population , Cattle/physiology , Animal Feed/analysis , Animals , Brassica napus , Diet/veterinary , Dietary Supplements , Edible Grain , Energy Intake , Energy Metabolism , Female , Lactation , Methane/biosynthesis , Milk , Poaceae/metabolism , Silage , Glycine max , Thermogenesis , Zea mays
8.
J Dairy Sci ; 103(9): 7983-7997, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32534917

ABSTRACT

The objective of the present study was to investigate factors related to variation in feed efficiency (FE) among cows. Data included 841 cow/period observations from 31 energy metabolism studies assembled across 3 research stations. The cows were categorized into low-, medium-, and high-FE groups according to residual feed intake (RFI), residual energy-corrected milk (RECM), and feed conversion efficiency (FCE). Mixed model regression was conducted to identify differences among the efficiency groups in animal and energy metabolism traits. Partial regression coefficients of both RFI and RECM agreed with published energy requirements more closely than cofficients derived from production experiments. Within RFI groups, efficient (Low-RFI) cows ate less, had a higher digestibility, produced less methane (CH4) and heat, and had a higher efficiency of metabolizable energy (ME) utilization for milk production. High-RECM (most efficient) cows produced 6.0 kg/d more of energy-corrected milk (ECM) than their Low-RECM (least efficient) contemporaries at the same feed intake. They had a higher digestibility, produced less CH4 and heat, and had a higher efficiency of ME utilization for milk production. The contributions of improved digestibility, reduced CH4, and reduced urinary energy losses to increased ME intake at the same feed intake were 84, 12, and 4%, respectively. For both RFI and RECM analysis, increased metabolizability contributed to approximately 35% improved FE, with the remaining 65% attributed to the greater efficiency of utilization of ME. The analysis within RECM groups suggested that the difference in ME utilization was mainly due to the higher maintenance requirement of Low-RECM cows compared with Medium- and High-RECM cows, whereas the difference between Medium- and High-RECM cows resulted mainly from the higher efficiency of ME utilization for milk production in High-RECM cows. The main difference within FCE (ECM/DMI) categories was a greater (8.2 kg/d) ECM yield at the expense of mobilization in High-FCE cows compared with Low-FCE cows. Methane intensity (CH4/ECM) was lower for efficient cows than for inefficient cows. The results indicated that RFI and RECM are different traits. We concluded that there is considerable variation in FE among cows that is not related to dilution of maintenance requirement or nutrient partitioning. Improving FE is a sustainable approach to reduce CH4 production per unit of product, and at the same time improve the economics of milk production.


Subject(s)
Animal Feed , Cattle/metabolism , Digestion , Energy Metabolism , Animals , Atmosphere Exposure Chambers/veterinary , Brassica napus/metabolism , Diet/veterinary , Female , Food Handling , Heating , Lactation , Male , Methane/biosynthesis , Milk , Nutritional Requirements , Respiration
9.
Br J Biomed Sci ; 77(3): 118-122, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32065051

ABSTRACT

BACKGROUND: Although miR-410 acts as a cancer inducer in colorectal cancer, there is limited data on the clinical implications of miR-410 expression levels in patients. We hypothesized a link between miR-410 expression and its potential clinical values in patients with colorectal cancer. MATERIAL AND METHODS: 120 colorectal cancer tissue specimens and 120 adjacent non-tumour tissues were obtained. Quantification of miR-410 expression levels was determined by, quantitative RT-PCR. Expression was analysed by clinical features. RESULTS: miR-410 was up-regulated in malignant tissues compared with corresponding normal tissues (P < 0.01), with TNM stage and lymph node metastasis (P = 0.03, P = 0.004, respectively), and with worse overall survival (P = 0.002). Multivariate survival analysis identified it as an independent risk factor for outcome (P = 0.021, HR = 2.19; 95% CI = 1.12-4.25). CONCLUSION: Compared to normal non-cancerous tissues, miR-410 was overexpressed in tumour tissues and is independently associated with the unfavourable outcome. Levels of MiR-410 might a useful laboratory tool in managing and predicting the prognosis of colorectal cancer.


Subject(s)
Colorectal Neoplasms/genetics , MicroRNAs/genetics , Up-Regulation/genetics , Biomarkers, Tumor/genetics , Colorectal Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Lymphatic Metastasis/genetics , Lymphatic Metastasis/pathology , Male , Middle Aged , Multivariate Analysis , Prognosis , Real-Time Polymerase Chain Reaction/methods , Risk Factors
10.
J Dairy Sci ; 102(7): 5811-5852, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31030912

ABSTRACT

Nitrogen is a component of essential nutrients critical for the productivity of ruminants. If excreted in excess, N is also an important environmental pollutant contributing to acid deposition, eutrophication, human respiratory problems, and climate change. The complex microbial metabolic activity in the rumen and the effect on subsequent processes in the intestines and body tissues make the study of N metabolism in ruminants challenging compared with nonruminants. Therefore, using accurate and precise measurement techniques is imperative for obtaining reliable experimental results on N utilization by ruminants and evaluating the environmental impacts of N emission mitigation techniques. Changeover design experiments are as suitable as continuous ones for studying protein metabolism in ruminant animals, except when changes in body weight or carryover effects due to treatment are expected. Adaptation following a dietary change should be allowed for at least 2 (preferably 3) wk, and extended adaptation periods may be required if body pools can temporarily supply the nutrients studied. Dietary protein degradability in the rumen and intestines are feed characteristics determining the primary AA available to the host animal. They can be estimated using in situ, in vitro, or in vivo techniques with each having inherent advantages and disadvantages. Accurate, precise, and inexpensive laboratory assays for feed protein availability are still needed. Techniques used for direct determination of rumen microbial protein synthesis are laborious and expensive, and data variability can be unacceptably large; indirect approaches have not shown the level of accuracy required for widespread adoption. Techniques for studying postruminal digestion and absorption of nitrogenous compounds, urea recycling, and mammary AA metabolism are also laborious, expensive (especially the methods that use isotopes), and results can be variable, especially the methods based on measurements of digesta or blood flow. Volatile loss of N from feces and particularly urine can be substantial during collection, processing, and analysis of excreta, compromising the accuracy of measurements of total-tract N digestion and body N balance. In studying ruminant N metabolism, nutritionists should consider the longer term fate of manure N as well. Various techniques used to determine the effects of animal nutrition on total N, ammonia- or nitrous oxide-emitting potentials, as well as plant fertilizer value, of manure are available. Overall, methods to study ruminant N metabolism have been developed over 150 yr of animal nutrition research, but many of them are laborious and impractical for application on a large number of animals. The increasing environmental concerns associated with livestock production systems necessitate more accurate and reliable methods to determine manure N emissions in the context of feed composition and ruminant N metabolism.


Subject(s)
Animal Husbandry/methods , Animal Nutrition Sciences/methods , Nitrogen/metabolism , Ruminants/metabolism , Animal Feed/analysis , Animal Nutrition Sciences/instrumentation , Animal Nutritional Physiological Phenomena , Animals
12.
Br J Dermatol ; 181(4): 722-732, 2019 10.
Article in English | MEDLINE | ID: mdl-30729516

ABSTRACT

BACKGROUND: Noninvasive quantitative assessment of dermal fibrosis remains a challenge. Optical coherence tomography (OCT) and high-frequency ultrasound (HFUS) can accurately measure structural and physiological changes in skin. OBJECTIVES: To perform quantitative analysis of cutaneous fibrosis. METHODS: Sixty-two healthy volunteers underwent multiple sequential skin biopsies (day 0 and 1-8 weekly thereafter), with OCT and HFUS measurements at each time point supported with immunohistomorphometry analysis. RESULTS: HFUS and OCT provided quantitative measurements of skin thickness, which increased from uninjured skin (1·18 and 1·2 mm, respectively) to week 1 (1·28 mm, P = 0·01; 1·27 mm, P = 0·02), and compared favourably with haematoxylin and eosin. Spearman correlation showed good agreement between techniques (P < 0·001). HFUS intensity corresponded to dermal density, with reduction from uninjured skin (42%) to week 8 (29%) (P = 0·02). The OCT attenuation coefficient linked with collagen density and was reduced at week 8 (1·43 mm, P < 0·001). Herovici analysis showed that mature collagen levels were highest in uninjured skin (72%) compared with week 8 (42%, P = 0·04). Fibronectin was greatest at week 4 (0·72 AU) and reduced at week 8 (0·56 AU); and α-smooth muscle actin increased from uninjured skin (11·5%) to week 8 (67%, P = 0·003). CONCLUSIONS: Time-matched comparison images between haematoxylin and eosin, OCT and HFUS demonstrated that epidermal and dermal structures were better distinguished by OCT. HFUS enabled deeper visualization of the dermis including the subcutaneous tissue. Choice of device was dependent on the depth of scar type, parameters to be measured and morphological detail required in order to provide better objective quantitative indices of the quality and extent of dermal fibrosis.


Subject(s)
Cicatrix/diagnostic imaging , Dermis/pathology , Adult , Biopsy/adverse effects , Cicatrix/etiology , Cicatrix/pathology , Dermis/diagnostic imaging , Female , Fibrosis , Healthy Volunteers , Humans , Immunohistochemistry , Male , Tomography, Optical Coherence , Ultrasonography , Young Adult
13.
Animal ; 13(5): 959-967, 2019 May.
Article in English | MEDLINE | ID: mdl-30301478

ABSTRACT

Very recently, we added water to a dry texturized starter diet and found substantial improvements in calf performance during summer, leading to the hypothesis that the wet starter diet would also benefit calf performance during winter. Forty-five 3-day-old male Holstein calves (BW 43.4±3.4 kg) were blocked by initial BW and distributed randomly to one of three starter diets (1 calf per pen; 15 pens per treatment) that differed only in moisture content as 90%, 75% and 50% dry matter (DM; DM90, DM75 and DM50, respectively). The starter diet comprised 55.1% ground ingredients (soybean meal, barley and corn gluten meal), 21.9% whole corn, 10% rolled barley and 10% chopped alfalfa hay. The mean ambient temperature averaged 2.1±0.9°C during the 70-day experiment. Calves were weaned at day 50 of the study. Although starter feed intake remained unaffected by treatment, the calves receiving DM75 and DM50 consumed more starter feed (DM basis) than those receiving DM90 diet during the first 20 days of the experiment. Body weight at weaning exhibited a quadratic response with the heaviest weaning weight (76.8 kg) occurring when calves consumed DM75 diet. Adding water to the dry starter diet tended to linearly increase final BW. Average daily gain during the pre- (0.67 kg/day) and post-weaning (1.22 kg/day) periods was the greatest for calves receiving DM75 and DM50, respectively. Although feed efficiency during the pre-weaning and overall periods did not differ across the treatments, a quadratic effect was detected in the post-weaning feed efficiency, with the lowest value being observed with DM75 diet. No difference was noted on skeletal growth parameters measured on days 50 and 70. Adding water to the dry starter diet linearly increased total volatile fatty acids concentration in the rumen. No difference among treatments existed in calf behavior recorded on days 35 and 70. As moisture content of the starter diet increased, the extent of sorting for long particles (>2 mm) and against fine particles (<0.125 mm) decreased. During the 70-day winter trial, adding water to the dry texturized starter diet with 10% chopped alfalfa hay resulted in a higher feed intake during the first weeks of life, a quadratic tendency toward improved growth rate during the pre-weaning period, and possibly a more functional rumen fermentation. A wet starter diet with 75% DM in the physical form offered in this study can be recommended to improve calf performance during winter.


Subject(s)
Cattle/physiology , Fatty Acids, Volatile/metabolism , Feeding Behavior/drug effects , Rumen/metabolism , Water/metabolism , Animal Feed/analysis , Animals , Cattle/growth & development , Diet/veterinary , Dietary Supplements/analysis , Male , Random Allocation , Water/administration & dosage
14.
J Dairy Sci ; 101(7): 6655-6674, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29680642

ABSTRACT

Ruminant production systems are important contributors to anthropogenic methane (CH4) emissions, but there are large uncertainties in national and global livestock CH4 inventories. Sources of uncertainty in enteric CH4 emissions include animal inventories, feed dry matter intake (DMI), ingredient and chemical composition of the diets, and CH4 emission factors. There is also significant uncertainty associated with enteric CH4 measurements. The most widely used techniques are respiration chambers, the sulfur hexafluoride (SF6) tracer technique, and the automated head-chamber system (GreenFeed; C-Lock Inc., Rapid City, SD). All 3 methods have been successfully used in a large number of experiments with dairy or beef cattle in various environmental conditions, although studies that compare techniques have reported inconsistent results. Although different types of models have been developed to predict enteric CH4 emissions, relatively simple empirical (statistical) models have been commonly used for inventory purposes because of their broad applicability and ease of use compared with more detailed empirical and process-based mechanistic models. However, extant empirical models used to predict enteric CH4 emissions suffer from narrow spatial focus, limited observations, and limitations of the statistical technique used. Therefore, prediction models must be developed from robust data sets that can only be generated through collaboration of scientists across the world. To achieve high prediction accuracy, these data sets should encompass a wide range of diets and production systems within regions and globally. Overall, enteric CH4 prediction models are based on various animal or feed characteristic inputs but are dominated by DMI in one form or another. As a result, accurate prediction of DMI is essential for accurate prediction of livestock CH4 emissions. Analysis of a large data set of individual dairy cattle data showed that simplified enteric CH4 prediction models based on DMI alone or DMI and limited feed- or animal-related inputs can predict average CH4 emission with a similar accuracy to more complex empirical models. These simplified models can be reliably used for emission inventory purposes.


Subject(s)
Cattle/metabolism , Diet , Methane/analysis , Methane/metabolism , Sulfur Hexafluoride/metabolism , Animal Feed , Animals , Environmental Pollution , Ruminants , Uncertainty
15.
J Dairy Sci ; 101(2): 1136-1151, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29224879

ABSTRACT

Four lipid supplements varying in chain length or degree of unsaturation were examined for their effects on milk yield and composition, ruminal CH4 emissions, rumen fermentation, nutrient utilization, and microbial ecology in lactating dairy cows. Five Nordic Red cows fitted with rumen cannulas were used in a 5 × 5 Latin square with five 28-d periods. Treatments comprised total mixed rations based on grass silage with a forage-to-concentrate ratio of 60:40 supplemented with no lipid (CO) or 50 g/kg of diet dry matter (DM) of myristic acid (MA), rapeseed oil (RO), safflower oil (SO), or linseed oil (LO). Feeding MA resulted in the lowest DM intake, and feeding RO reduced DM intake compared with CO. Feeding MA reduced the yields of milk, milk constituents, and energy-corrected milk. Plant oils did not influence yields of milk and milk constituents, but reduced milk protein content compared with CO. Treatments had no effect on rumen fermentation characteristics, other than an increase in ammonia-N concentration due to feeding MA, RO, and SO compared with CO. Lipid supplements reduced daily ruminal CH4 emission; however, the response was to some extent a result of lower feed intake. Lipids modified microbial community structure without affecting total counts of bacteria, archaea, and ciliate protozoa. Dietary treatments had no effect on the apparent total tract digestibility of organic matter, fiber, and gross energy. Treatments did not affect either energy secreted in milk as a proportion of energy intake or efficiency of dietary N utilization. All lipids lowered de novo fatty acid synthesis in the mammary gland. Plant oils increased proportions of milk fat 18:0, cis 18:1, trans and monounsaturated fatty acids, and decreased saturated fatty acids compared with CO and MA. Both SO and LO increased the proportion of total polyunsaturated fatty acids, total conjugated linolenic acid, and cis-9,trans-11 conjugated linoleic acid. Feeding MA clearly increased the Δ9 desaturation of fatty acids. Our results provide compelling evidence that plant oils supplemented to a grass silage-based diet reduce ruminal CH4 emission and milk saturated fatty acids, and increase the proportion of unsaturated fatty acids and total conjugated linoleic acid while not interfering with digestibility, rumen fermentation, rumen microbial quantities, or milk production.


Subject(s)
Cattle/metabolism , Dietary Supplements/analysis , Fatty Acids/metabolism , Linseed Oil/metabolism , Methane/biosynthesis , Rapeseed Oil/metabolism , Safflower Oil/metabolism , Silage/analysis , Ammonia/metabolism , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Fiber/metabolism , Digestion , Energy Intake , Fatty Acids/chemistry , Female , Fermentation , Lactation , Milk/chemistry , Milk/metabolism , Poaceae/metabolism , Rumen/metabolism
16.
J Mech Behav Biomed Mater ; 75: 75-81, 2017 11.
Article in English | MEDLINE | ID: mdl-28697402

ABSTRACT

PURPOSE: Increasing numbers of women undergo breast implantation for cosmetic and reconstructive purposes. Contracture of the fibrous capsule, which encases the implant leads to significant pain and reoperation. Texture, wettability and the cellular reaction to implant surfaces are poorly understood determinants of implant biocompatibility. The aim of this study was to evaluate the in-vitro characteristics of a range of commercial available implants using a macrophage based assay of implant biocompatibility and a quantitative assessment of wettability and texture. METHODS: Thirteen commercially available surfaces were subjected to wettability and texture characterisation using scanning and laser confocal microscopy. THP-1 macrophages were cultured on their surfaces and assessed using Integrin αV immunocytochemistry, SEM and RT-PCR for the expression of TNF-Alpha, IL-6, IL-10 and a cytokine array for the production of TNF-alpha, IL-10, IL-1RA and IL1ß; important indicators of inflammation and macrophage polarization. RESULTS: Textured surfaces can be accurately sub-categorized dependent upon roughness and re-entrant features into four main types (macro, micro, meso and nano-textured surfaces). Significant (P < 0.0001) differences in implant hydrophobicity and texture exist. Certain surfaces promoted poor macrophage polarization and an innate potential to foster a proinflammatory response. A subgroup analysis showed that texture had a variable effect on markers of inflammation in these surfaces. CONCLUSIONS: We propose a classification of implant surfaces based on roughness and present a macrophage based assay of breast implant biocompatibility with a quantitative assessment of implant wettability and texture. The breast implant surface-cell interaction is variable and sufficient to alter healing response and capsular contracture fate in-vivo.


Subject(s)
Biocompatible Materials/analysis , Breast Implants , Silicones/analysis , Cytokines/metabolism , Female , Humans , Materials Testing , Surface Properties , THP-1 Cells
17.
PLoS One ; 12(3): e0172955, 2017.
Article in English | MEDLINE | ID: mdl-28257480

ABSTRACT

Keloid disease (KD) is a fibroproliferative cutaneous tumour characterised by heterogeneity, excess collagen deposition and aggressive local invasion. Lack of a validated animal model and resistance to a multitude of current therapies has resulted in unsatisfactory clinical outcomes of KD management. In order to address KD from a new perspective, we applied for the first time a site-specific in situ microdissection and gene expression profiling approach, through combined laser capture microdissection and transcriptomic array. The aim here was to analyse the utility of this approach compared with established methods of investigation, including whole tissue biopsy and monolayer cell culture techniques. This study was designed to approach KD from a hypothesis-free and compartment-specific angle, using state-of-the-art microdissection and gene expression profiling technology. We sought to characterise expression differences between specific keloid lesional sites and elucidate potential contributions of significantly dysregulated genes to mechanisms underlying keloid pathobiology, thus informing future explorative research into KD. Here, we highlight the advantages of our in situ microdissection strategy in generating expression data with improved sensitivity and accuracy over traditional methods. This methodological approach supports an active role for the epidermis in the pathogenesis of KD through identification of genes and upstream regulators implicated in epithelial-mesenchymal transition, inflammation and immune modulation. We describe dermal expression patterns crucial to collagen deposition that are associated with TGFß-mediated signalling, which have not previously been examined in KD. Additionally, this study supports the previously proposed presence of a cancer-like stem cell population in KD and explores the possible contribution of gene dysregulation to the resistance of KD to conventional therapy. Through this innovative in situ microdissection gene profiling approach, we provide better-defined gene signatures of distinct KD regions, thereby addressing KD heterogeneity, facilitating differential diagnosis with other cutaneous fibroses via transcriptional fingerprinting, and highlighting key areas for future KD research.


Subject(s)
Fibroblasts/immunology , Gene Expression Regulation , Keloid/genetics , Keratinocytes/immunology , Neoplastic Stem Cells/immunology , Transcriptome/immunology , Biopsy , Collagen/genetics , Collagen/immunology , Epidermis/immunology , Epidermis/pathology , Epithelial-Mesenchymal Transition , Fibroblasts/pathology , Gene Expression Profiling , Humans , Inflammation , Keloid/immunology , Keloid/pathology , Keratinocytes/pathology , Laser Capture Microdissection , Microarray Analysis , Neoplastic Stem Cells/pathology , Organ Specificity , Primary Cell Culture , Signal Transduction , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology
18.
Transl Anim Sci ; 1(3): 277-286, 2017 Sep.
Article in English | MEDLINE | ID: mdl-32704652

ABSTRACT

The effects of supplementing high- or low-concentrate diets with sunflower oil (SO) on rumen fermentation, nutrient utilization, and ruminal methane (CH4) emissions in lactating cows were examined. Four multiparous Nordic Red dairy cows fitted with rumen cannulae were used in a 4 × 4 Latin square with a 2 × 2 factorial arrangement of treatments and 35-d periods. Experimental treatments comprised iso-nitrogenous total mixed rations based on grass silage with forage to concentrate ratio of 65:35 or 35:65 supplemented with 0 or 50 g/kg diet DM of SO. Apparent ruminal OM and starch digestibility was greater (P < 0.05) with high- than low-concentrate diets but was unaffected by SO. Inclusion of SO in high-concentrate diet decreased (P ≤ 0.05) apparent total tract OM, fiber, and GE, and apparent ruminal fiber digestibility. High-concentrate diets and SO shifted (P < 0.05) fiber digestion from rumen to the hindgut. High-concentrate diet resulted in a lower rumen pH and elevated total rumen VFA concentration compared with low-concentrate diet, whereas SO increased rumen pH and decreased rumen VFA concentration when included in high-, but not low-concentrate diet (P < 0.05 for interaction). High-concentrate diet reduced rumen ammonia-N (P < 0.01) and molar proportion of acetate to propionate (P < 0.01), and decreased (P < 0.05) ruminal CH4 emissions when expressed as g/d or g/kg OM digested in the rumen. With both low- and high-concentrate diets, SO reduced (P < 0.05) daily emissions of CH4 as g/d or g/kg OM digested in the rumen, but SO reduced CH4 emissions expressed as g/kg OM intake, OM digested in total digestive tract, energy-corrected milk or % of GE intake only with low-concentrate diet (P ≤ 0.05 for interaction). In conclusion, replacing grass silage with concentrates led to a reduction in daily ruminal CH4 emissions that were accompanied by a shift in rumen fermentation toward the synthesis of propionate, and decreases in rumen pH and fiber digestion. Sunflower oil was effective in reducing daily CH4 emissions in lactating cows which was accompanied by a noticeable lower feed intake with high- but not low-concentrate diet. Overall the effects of SO and greater proportion of concentrates in the diet on daily CH4 emissions were additive but the additivity declined or vanished when different indices of CH4 emission intensity were considered. Consequently, SO was more effective in reducing CH4 emissions when low-concentrate diet was fed.

19.
Acta Biomater ; 49: 260-271, 2017 02.
Article in English | MEDLINE | ID: mdl-27919840

ABSTRACT

Breast implant use has tripled in the last decade with over 320,000 breast implant based reconstructions and augmentations performed in the US per annum. Unfortunately a considerable number of women will experience capsular contracture, the irrepressible and disfiguring, tightening and hardening of the fibrous capsule that envelops the implant. Functionalising implant surfaces with biocompatible tissue-specific textures may improve in vivo performance. A novel biomimetic breast implant is presented here with anti-inflammatory in vitro abilities. Topographical assessment of native breast tissue facilitated the development of a statistical model of adipose tissue. 3D grayscale photolithography and ion etching were combined to successfully replicate a surface modelled upon the statistics of breast tissue. Pro-inflammatory genes ILß1, TNFα, and IL6 were downregulated (p<0.001) and anti-inflammatory gene IL-10 were upregulated on the novel surface. Pro-inflammatory cytokines Gro-Alpha, TNFα and neutrophil chemoattractant IL8 were produced in lower quantities and anti-inflammatory IL-10 in higher quantities in culture with the novel surface (p<0.01). Immunocytochemistry and SEM demonstrated favourable fibroblast and macrophage responses to these novel surfaces. This study describes the first biomimetic breast tissue derived breast implant surface. Our findings attest to its potential translational ability to reduce the inflammatory phase of the implant driven foreign body reaction. STATEMENT OF SIGNIFICANCE: Breast implants are still manufactured using outdated techniques and have changed little since their inception in the 1960's. Breast implants can cause a medical condition, capsular contracture which often results in disfigurement, pain, implant removal and further surgery. This condition is due to the body's reaction to these breast implants. This article describes the successful development and testing of a novel breast implant surface inspired by the native shapes present in breast tissue. Results show that this novel implant surface is capable of reducing the negative reaction of human cells to these surfaces which may help reduce capsular contracture formation. This work represents the first steps in producing a biocompatible breast implant.


Subject(s)
Biomimetic Materials/pharmacology , Biomimetics/methods , Breast Implants , Adipocytes/cytology , Adipocytes/ultrastructure , Adipose Tissue/cytology , Cell Line , Cell Proliferation , Cytokines/biosynthesis , Female , Fibroblasts/cytology , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , Macrophages/cytology , Microscopy, Atomic Force , Microscopy, Confocal , Nanofibers/chemistry , Silicones/chemistry
20.
Animal ; 11(5): 890-899, 2017 May.
Article in English | MEDLINE | ID: mdl-28007048

ABSTRACT

Attempts to lower the environmental footprint of milk production needs a sound understanding of the genetic and nutritional basis of methane (CH4) emissions from the dairy production systems. This in turn requires accurate and reliable techniques for the measurement of CH4 output from individual cows. Many of the available measurement techniques so far are either slow, expensive, labor intensive and are unsuitable for large-scale individual animal measurements. The main objectives of this study were to examine and validate a non-invasive individual cow CH4 measurement system that is based on photoacoustic IR spectroscopy (PAS) technique implemented in a portable gas analysis equipment (F10), referred to as PAS-F10 method and to estimate the magnitude of between-animal variations in CH4 output traits. Data were collected from 115 Nordic Red cows of the Minkiö experimental dairy farm, at the Natural Resources Institute Finland (Luke). Records on continuous daily measurements of CH4, milk yield, feed intake and BW measurements over 2 years period were compiled for data analysis. The daily CH4 output was calculated using carbon dioxide as a tracer method. Estimates from the non-invasive PAS-F10 technique were then tested against open-circuit indirect respiration calorimetric chamber measurements and against estimates from other widely used prediction models. Concordance analysis was used to establish agreement between the chamber and PAS-F10 methods. A linear mixed model was used for the analysis of the large continuous data. The daily CH4 output of cows was 555 l/day and ranged from 330 to 800 l/day. Dry matter intake, level of milk production, lactation stage and diurnal variation had significant effects on daily CH4 output. Estimates of the daily CH4 output from PAS-F10 technique compared relatively well with the other techniques. The concordance correlation coefficient between combined weekly CH4 output estimates of PAS-F10 and chamber was 0.84 with lower and upper confidence limits of 0.65 and 0.93, respectively. Similarly, when chamber CH4 measurements were predicted from PAS-F10 measurements, the mean of two separate weekly PAS-F10 measurements gave the lowest prediction error variance than either of the separate weekly PAS-F10 measurements alone. This suggests that every other week PAS-F10 measurements when combined would improve the estimation of CH4 output with PAS-F10 technique. The repeatability of daily CH4 output from PAS-F10 technique ranged from 0.40 to 0.46 indicating that some between-animal variation exist in CH4 output traits.


Subject(s)
Cattle/metabolism , Environmental Monitoring/methods , Methane/biosynthesis , Photoacoustic Techniques/veterinary , Spectrophotometry, Infrared/veterinary , Animals , Female , Finland , Photoacoustic Techniques/methods , Spectrophotometry, Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...