Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(40): e2302355, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37282744

ABSTRACT

By preparing colloidal crystals with random missing scatterers, crystals are created where disorder is embodied as vacancies in an otherwise perfect lattice. In this special system, there is a critical defect concentration where light propagation undergoes a transition from an all but perfect reflector (for the spectral range defined by the Bragg condition), to a metamaterial exhibiting an enhanced transmission phenomenon. It is shown that this behavior can be phenomenologically described in terms of Fano-like resonances. The results show that the Fano's parameter q experiences a sign change signaling the transition from a perfect crystal exhibiting a reflectance Bragg peak, through a state where background scattering is maximum and Bragg reflectance reaches a minimum to a point where the system reenters a low scattering state recovering ordinary Bragg diffraction. A simple dipolar model considering the correlation between scatterers and vacancies is proposed and the reported evolution of the Fano-like scattering is explained in terms of the emerging covariance between the optical paths and polarizabilities and the effect of field enhancement in photonic crystal (PhC) defects.

2.
Sci Rep ; 13(1): 6847, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37100835

ABSTRACT

Breast cancer (BC) is one of the most commonly diagnosed cancers and the second leading cause of cancer mortality among women around the world. The purpose of this study is to present a non-labeled liquid crystal (LC) biosensor, based on the inherent feature of nematic LCs, for the evaluation of BC using the human epidermal growth factor receptor-2 (HER-2) biomarker. The mechanism of this sensing is supported by surface modification with dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride (DMOAP) encouraging the long alkyl chains that induce a homeotropic orientation of the LC molecules at the interface. To enhance the binding efficacy of more HER-2 antibody (Ab) on LC aligning agents, a simple ultraviolet radiation-assisted method was also used to increase functional groups on the DMOAP coated slides, thereby improving binding affinity and efficiency onto HER-2 Abs. The designed biosensor makes use of the specific binding of HER-2 protein to HER-2 Ab and disruption of the orientation of LCs. This orientation change leads to a transition of the optical appearance from dark to birefringent, enabling the detection of HER-2. This novel biosensor exhibits a linear optical response to HER-2 concentration in the wide dynamic range of 10-6-102 ng/mL, with an ultra-low detection limit of 1 fg/mL. As a proof of concept, the designed LC biosensor was successfully investigated for the quantification of HER-2 protein in patients suffering from BC. Owing to the sensitivity, selectivity, and label-free detection, this biosensor may amplify the application of LC-based biosensors for the detection of most types of cancers.


Subject(s)
Biosensing Techniques , Liquid Crystals , Mammary Glands, Human , Humans , Female , Liquid Crystals/chemistry , Ultraviolet Rays , Oncogenes , Antibodies , Biosensing Techniques/methods
3.
Appl Opt ; 60(36): 11211-11216, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-35201110

ABSTRACT

This paper investigates the optical properties of the two plasma photonic crystal structures. The first structure contains periodic thin layers of plasma with heterogeneous densities, and in the second one, the heterogeneous plasma layer has been applied as the defect layer of a one-dimensional photonic crystal. Herein, the plasma density distribution function is considered a continuous function of plasma critical density as follows: n=ncrf(r→), where ncr=meε0ω2/e2 represents the critical density of the plasma and f(r→) indicates the plasma density distribution function. The heterogeneous plasma layer is assumed to be composed of several homogeneous sublayers with constant density. The transfer-matrix method is applied in calculations, and the total transfer matrix is obtained by multiplying the transfer matrices of each sublayer. Properties and behavior of the photonic bandgap and the defect mode for five different plasma density distribution functions and applied external constant magnetic field are comparatively investigated. Results show that, in the first structure, increasing the incident angle from 0° to 30° causes a bandgap shift to higher frequencies. So, the incident angle is a parameter that can control the bandgap. In the defective structure, the intensity of the defect modes is almost the same in all five distributions, but their locations in the spectrum are different. The effect of the lateral position of the maximum density and external constant magnetic field on the defect mode position is also investigated. The capability of controlling the photonic bandgaps and defect modes of the plasma photonic crystals creates wide applications in promising tunable optical devices, such as optical filters.

4.
Heliyon ; 6(2): e03382, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32072062

ABSTRACT

In this paper, it is shown that the sequence of chemical etching of the template and annealing has a significant effect on the shape and spectrum of the nano-metal arrays fabricated by nanosphere lithography (NSL). Higher nanoparticles with sharp edges are fabricated as a consequence of annealing the metal coated template, which is a 2d colloidal crystal, before chemical etching. Consequently, the absorption spectra of the fabricated sample become much sharper, in comparison with the one that is fabricated with the reversed order and also a shift is observed in the peak wavelength. The achieved result has practical importance for the applications of these nano-metal arrays in localized surface plasmon resonance (LSPR) based sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...