Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 26(1): 015004, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24275059

ABSTRACT

We have achieved integration of polar ZnO[0001] epitaxial thin films with Si(111) substrates where cubic yttria-stabilized zirconia (c-YSZ) was used as a template on a Si(111) substrate. Using XRD (θ-2θ and φ scans) and HRTEM techniques, the epitaxial relationship between the ZnO and the c-YSZ layers was shown to be [0001]ZnO || [111]YSZ and [21¯1¯0]ZnO || [1¯01](c-YSZ), where the [21¯1¯0] direction lies in the (0001) plane, and the [1¯01] direction lies in the (111) plane. Similar studies on the c-YSZ/Si interface revealed epitaxy as (111)YSZ || (111)Si and in-plane (110)YSZ || (110)Si. HRTEM micrographs revealed atomically sharp and crystallographically continuous interfaces. The ZnO epilayers were subsequently laser annealed by a single pulse of a nanosecond excimer KrF laser. It was shown that the hydrophobic behavior of the pristine sample became hydrophilic after laser treatment. XPS was employed to study the effect of laser treatment on surface stoichiometry of the ZnO epilayers. The results revealed the formation of oxygen vacancies, which are envisaged to control the observed hydrophilic behavior. Our AFM studies showed surface smoothing due to the coupling of the high energy laser beam with the surface. The importance of integration of c-axis ZnO with Si(111) substrates is emphasized using the paradigm of domain matching epitaxy on the c-YSZ[111] buffer platform along with their out-of-plane orientation, which leads to improvement of the performance of the solid-state devices. The observed ultrafast response and switching in photochemical characteristics provide new opportunities for application of ZnO in smart catalysts, sensors, membranes, DNA self-assembly and multifunctional devices.


Subject(s)
Lasers , Nanotechnology , Silicon/chemistry , Zinc Oxide/chemistry , Crystallography , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Transmission , Surface Properties , Water/chemistry , Wettability , Yttrium/chemistry , Zirconium/chemistry
2.
J Phys Condens Matter ; 24(39): 395005, 2012 Oct 03.
Article in English | MEDLINE | ID: mdl-22941905

ABSTRACT

We show that pure rutile TiO(2) can be photo-responsive even under low energy visible light after annealing in vacuum where we envisage that the point defects, i.e. oxygen vacancies and titanium interstitials, serve an important role. In this study, single crystal rutile films were grown by the pulsed laser deposition technique and then vacuum annealed under different oxygen pressures to introduce defects into their lattices. 4-chlorophenol was selected as a model material and decomposed by the annealed TiO(2) films where the maximum photocatalytic reaction rate constants were determined as 0.0107 and 0.0072 min(-1) under UV and visible illumination. Epitaxial growth along the [200] direction was confirmed by φ-scan and 2θ-scan XRD and the epitaxial relationship between the rutile film and the c-sapphire substrate was explained as (100)[010](R) [parallel] (0001)[12[combining overline]10](S). The formation of atomically sharp interfaces and the epitaxial growth were ascertained by annular dark-field STEM imaging. Based on the XPS, UV-vis and PL spectroscopy results, it was found that the defect concentration increased after annealing under lower pressures, e.g. 5 × 10(-6) Torr. In contrast, more perfect crystals were obtained when the films were annealed under high oxygen pressures, namely 5 × 10(1) Torr. The morphology of the films was also investigated by employing an AFM technique. It was observed that increase of the annealing pressure results in the formation of larger grains. It was also found that the electrical resistivity of the rutile films strongly increased by about three orders of magnitude when the annealing pressure increased from 5 × 10(-4) to 5 × 10(1) Torr.


Subject(s)
Chlorophenols/chemistry , Photochemical Processes , Titanium/chemistry , Ultraviolet Rays , Catalysis , Oxygen/chemistry , Pressure , Vacuum , X-Ray Diffraction
3.
Colloids Surf B Biointerfaces ; 86(1): 14-20, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21514799

ABSTRACT

For the first time, ZrO2-HA-TiO2 layers were synthesized through EPD-Enhanced MAO (EEMAO) technique in only one step where no supplementary treatment was required. SEM, XRD, EDX, and XPS techniques were employed to propose a correlation between the growth parameters and the physical and chemical properties of the layers. The layers revealed a porous structure where applying higher voltages and/or utilizing higher concentrated electrolytes resulted in formation of wider pores and increasing the zirconium concentration in the layers; meanwhile, prolonging the growth time had the same effects. The layers mainly consisted of anatase, hydroxyapatite, monoclinic ZrO2, and tetragonal ZrO2 phases. Increasing the voltage, electrolyte concentration, and time, hydroxyapatite as well as tetragonal ZrO2 was decomposed to α-TCP, monoclinic ZrO2, and ZrO. The nanosized zirconia particles (d = 20-60 nm) were further accumulated on the vicinity of the layers when thicker electrolytes were utilized or higher voltages were applied. Emphasizing on the chemical and electrochemical foundations, a probable formation mechanism was finally put forward.


Subject(s)
Durapatite/chemistry , Nanostructures/chemistry , Titanium/chemistry , Zirconium/chemistry , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL
...