Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Procedia Vaccinol ; 6: 134-140, 2012.
Article in English | MEDLINE | ID: mdl-32288919

ABSTRACT

PRRSV live vaccines are widely used in pig farming practice and are usually not adjuvanted. For safety issues, it would be useful to reduce the antigenic load of such vaccines while preserving their efficacy. In this study we show that the addition of polymer or oil adjuvants in a PRRS live vaccine enhanced the protection to challenge of vaccinated animals compared to a non-adjuvanted commercial reference. Moreover, for both types of adjuvants, despite lower antibody titers, the protection to challenge given by the adjuvanted vaccine containing only 50% of the antigen load was equivalent to the protection given by the non-adjuvanted vaccine. These results demonstrate that the addition of relevant adjuvants can enhance the efficacy of the protection conferred to animals by live vaccines.

2.
Virus Genes ; 42(2): 212-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21188626

ABSTRACT

Porcine respiratory coronavirus is related genetically to porcine transmissible gastroenteritis virus with a large deletion in S protein. The respiratory virus is a mutated form that may be a consequence of the gastroenteritis virus's evolution. Intensive passages of the virus in its natural host may enhance the appearance of mutations and therefore may contribute to any attenuated form of the virus. The objective of this study was to characterize the porcine transmissible gastroenteritis virus TMK22 strain after passages in piglets from 1992 until 2007. A typical experimental infection, molecular characterization, and serological analysis were also carried out to further characterize and to evaluate any significant difference between strains. The sequence analysis showed two amino acid deletions and loss of an N-glycosylation site in transmissible gastroenteritis virus S protein after passages in piglets. Although these deletions were positioned at the beginning of the antigenic site B of S protein, no clinical differences were observed in piglets infected experimentally either with the native virus or the mutated one. Serological tests did not show any antibody reactivity difference between the two strains. In this article, we report that the S protein deletion did not affect the virus's pathogenicity. The variety of the virus's evolutionary forms may be a result, not only of the multiple passages in natural hosts, but also of other factors, such as different pathogens co-infection, nutrition, immunity, and others. Further studies need to be carried out to characterize the mutated strain.


Subject(s)
Membrane Glycoproteins/genetics , Point Mutation , RNA, Viral , Swine/virology , Transmissible gastroenteritis virus/genetics , Viral Envelope Proteins/genetics , Amino Acid Sequence , Animals , Cells, Cultured , Gastroenteritis, Transmissible, of Swine/virology , Membrane Glycoproteins/biosynthesis , Molecular Sequence Data , Sequence Analysis, RNA , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...