Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 87(1): 446-456, 2022 01.
Article in English | MEDLINE | ID: mdl-34331470

ABSTRACT

PURPOSE: Quantitative magnetization transfer (qMT) imaging can be used to quantify the proportion of protons in a voxel attached to macromolecules. Here, we show that the original qMT balanced steady-state free precession (bSSFP) model is biased due to over-simplistic assumptions made in its derivation. THEORY AND METHODS: We present an improved model for qMT bSSFP, which incorporates finite radiofrequency (RF) pulse effects as well as simultaneous exchange and relaxation. Furthermore, a correction relating to finite RF pulse effects for sinc-shaped excitations is derived. The new model is compared to the original one in numerical simulations of the Bloch-McConnell equations and in previously acquired in vivo data. RESULTS: Our numerical simulations show that the original signal equation is significantly biased in typical brain tissue structures (by 7%-20%), whereas the new signal equation outperforms the original one with minimal bias (<1%). It is further shown that the bias of the original model strongly affects the acquired qMT parameters in human brain structures, with differences in the clinically relevant parameter of pool-size-ratio of up to 31%. Particularly high biases of the original signal equation are expected in an MS lesion within diseased brain tissue (due to a low T2/T1-ratio), demanding a more accurate model for clinical applications. CONCLUSION: The improved model for qMT bSSFP is recommended for accurate qMT parameter mapping in healthy and diseased brain tissue structures.


Subject(s)
Brain , Magnetic Resonance Imaging , Algorithms , Brain/diagnostic imaging , Heart Rate , Humans , Radio Waves
SELECTION OF CITATIONS
SEARCH DETAIL
...