Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Comput Methods Programs Biomed ; 253: 108239, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823116

ABSTRACT

BACKGROUND: The excitable gap (EG), defined as the excitable tissue between two subsequent wavefronts of depolarization, is critical for maintaining reentry that underlies deadly ventricular arrhythmias. EG in the His-Purkinje Network (HPN) plays an important role in the maintenance of electrical wave reentry that underlies these arrhythmias. OBJECTIVE: To determine if rapid His bundle pacing (HBP) during reentry reduces the amount of EG in the HPN and ventricular myocardium to suppress reentry maintenance and/or improve defibrillation efficacy. METHODS: In a virtual human biventricular model, reentry was initiated with rapid line pacing followed by HBP delivered for 3, 6, or 9 s at pacing cycle lengths (PCLs) ranging from 10 to 300 ms (n=30). EG was calculated independently for the HPN and myocardium over each PCL. Defibrillation efficacy was assessed for each PCL by stimulating myocardial surface EG with delays ranging from 0.25 to 9 s (increments of 0.25 s, n=36) after the start of HBP. Defibrillation was successful if reentry terminated within 1 s after EG stimulation. This defibrillation protocol was repeated without HBP. To test the approach under different pathological conditions, all protocols were repeated in the model with right (RBBB) or left (LBBB) bundle branch block. RESULTS: Compared to without pacing, HBP for >3 seconds reduced average EG in the HPN and myocardium across a broad range of PCLs for the default, RBBB, and LBBB models. HBP >6 seconds terminated reentrant arrhythmia by converting HPN activation to a sinus rhythm behavior in the default (6/30 PCLs) and RBBB (7/30 PCLs) models. Myocardial EG stimulation during HBP increased the number of successful defibrillation attempts by 3%-19% for 30/30 PCLs in the default model, 3%-6% for 14/30 PCLs in the RBBB model, and 3%-11% for 27/30 PCLs in the LBBB model. CONCLUSION: HBP can reduce the amount of excitable gap and suppress reentry maintenance in the HPN and myocardium. HBP can also improve the efficacy of low-energy defibrillation approaches targeting excitable myocardium. HBP during reentrant arrhythmias is a promising anti-arrhythmic and defibrillation strategy.


Subject(s)
Bundle of His , Humans , Bundle of His/physiopathology , Arrhythmias, Cardiac/therapy , Cardiac Pacing, Artificial/methods , Electric Countershock/methods , Heart Ventricles/physiopathology , Models, Cardiovascular
2.
Heart Rhythm ; 19(9): 1461-1470, 2022 09.
Article in English | MEDLINE | ID: mdl-35568136

ABSTRACT

BACKGROUND: Epicardial adipose tissue (EAT) accumulation is associated with cardiac arrhythmias. The effect of EAT secretome (EATs) on cardiac electrophysiology remains largely unknown. OBJECTIVE: The purpose of this study was to investigate the arrhythmogenicity of EATs and its underlying molecular and electrophysiological mechanisms. METHODS: We collected atrial EAT and subcutaneous adipose tissue (SAT) from 30 patients with atrial fibrillation (AF), and EAT from 3 donors without AF. The secretome was collected after a 24-hour incubation of the adipose tissue explants. We cultured neonatal rat ventricular myocytes (NRVMs) with EATs, subcutaneous adipose tissue secretome (SATs), and cardiomyocytes conditioned medium (CCM) for 72 hours. We implemented the electrophysiological changes observed after EATs incubation into a model of human left atrium and tested arrhythmia inducibility. RESULTS: Incubation of NRVMs with EATs decreased expression of the potassium channel subunit Kcnj2 by 26% and correspondingly reduced the inward rectifier K+ current IK1 by 35% compared to incubation with CCM, resulting in a depolarized resting membrane of cardiomyocytes. EATs decreased expression of connexin43 (29% mRNA, 46% protein) in comparison to CCM. Cells incubated with SATs showed no significant differences in Kcnj2 or Gja1 expression in comparison to CCM, and their resting potential was not depolarized. Cardiomyocytes incubated with EATs showed reduced conduction velocity and increased conduction heterogeneity compared to SATs and CCM. Computer modeling of human left atrium revealed that the electrophysiological changes induced by EATs promote sustained reentrant arrhythmias if EAT partially covers the myocardium. CONCLUSION: EAT slows conduction, depolarizes the resting potential, alters electrical cell-cell coupling, and facilitates reentrant arrhythmias.


Subject(s)
Atrial Fibrillation , Secretome , Adipose Tissue/metabolism , Animals , Heart Atria , Humans , Myocardium/metabolism , Pericardium , Rats
3.
PLoS Comput Biol ; 18(3): e1009893, 2022 03.
Article in English | MEDLINE | ID: mdl-35312675

ABSTRACT

Focal sources (FS) are believed to be important triggers and a perpetuation mechanism for paroxysmal atrial fibrillation (AF). Detecting FS and determining AF sustainability in atrial tissue can help guide ablation targeting. We hypothesized that sustained rotors during FS-driven episodes indicate an arrhythmogenic substrate for sustained AF, and that non-invasive electrical recordings, like electrocardiograms (ECGs) or body surface potential maps (BSPMs), could be used to detect FS and AF sustainability. Computer simulations were performed on five bi-atrial geometries. FS were induced by pacing at cycle lengths of 120-270 ms from 32 atrial sites and four pulmonary veins. Self-sustained reentrant activities were also initiated around the same 32 atrial sites with inexcitable cores of radii of 0, 0.5 and 1 cm. FS fired for two seconds and then AF inducibility was tested by whether activation was sustained for another second. ECGs and BSPMs were simulated. Equivalent atrial sources were extracted using second-order blind source separation, and their cycle length, periodicity and contribution, were used as features for random forest classifiers. Longer rotor duration during FS-driven episodes indicates higher AF inducibility (area under ROC curve = 0.83). Our method had accuracy of 90.6±1.0% and 90.6±0.6% in detecting FS presence, and 93.1±0.6% and 94.2±1.2% in identifying AF sustainability, and 80.0±6.6% and 61.0±5.2% in determining the atrium of the focal site, from BSPMs and ECGs of five atria. The detection of FS presence and AF sustainability were insensitive to vest placement (±9.6%). On pre-operative BSPMs of 52 paroxysmal AF patients, patients classified with initiator-type FS on a single atrium resulted in improved two-to-three-year AF-free likelihoods (p-value < 0.01, logrank tests). Detection of FS and arrhythmogenic substrate can be performed from ECGs and BSPMs, enabling non-invasive mapping towards mechanism-targeted AF treatment, and malignant ectopic beat detection with likely AF progression.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Pulmonary Veins , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Electrocardiography , Heart Atria , Humans
4.
J Vis Exp ; (180)2022 02 08.
Article in English | MEDLINE | ID: mdl-35225260

ABSTRACT

Structural remodeling is a common consequence of chronic pathological stresses imposed on the heart. Understanding the architectural and compositional properties of diseased tissue is critical to determine their interactions with arrhythmic behavior. Microscale tissue remodeling, below the clinical resolution, is emerging as an important source of lethal arrhythmia, with high prevalence in young adults. Challenges remain in obtaining high imaging contrast at sufficient microscale resolution for preclinical models, such as large mammalian whole hearts. Moreover, tissue composition-selective contrast enhancement for three-dimensional high-resolution imaging is still lacking. Non-destructive imaging using micro-computed tomography shows promise for high-resolution imaging. The objective was to alleviate sufferance from X-ray over attenuation in large biological samples. Hearts were extracted from healthy pigs (N = 2), and sheep (N = 2) with either induced chronic myocardial infarction and fibrotic scar formation or induced chronic atrial fibrillation. Excised hearts were perfused with: a saline solution supplemented with a calcium ion quenching agent and a vasodilator, ethanol in serial dehydration, and hexamethyldisilizane under vacuum. The latter reinforced the heart structure during air-drying for 1 week. Collagen-dominant tissue was selectively bound by an X-ray contrast-enhancing agent, phosphomolybdic acid. Tissue conformation was stable in air, permitting long-duration microcomputed tomography acquisitions to obtain high-resolution (isotropic 20.7 µm) images. Optimal contrast agent loading by diffusion showed selective contrast enhancement of the epithelial layer and sub-endocardial Purkinje fibers in healthy pig ventricles. Atrial fibrillation (AF) hearts showed enhanced contrast accumulation in the posterior walls and appendages of the atria, attributed to greater collagen content. Myocardial infarction hearts showed increased contrast selectively in regions of cardiac fibrosis, which enabled the identification of interweaving surviving myocardial muscle fibers. Contrast-enhanced air-dried tissue preparations enabled microscale imaging of the intact large mammalian heart and selective contrast enhancement of underlying disease constituents.


Subject(s)
Atrial Fibrillation , Heart Atria , Animals , Chronic Disease , Mammals , Myocardium/pathology , Sheep , Swine , X-Ray Microtomography
5.
Heart Rhythm ; 19(2): 308-317, 2022 02.
Article in English | MEDLINE | ID: mdl-34648972

ABSTRACT

BACKGROUND: Strong electric shocks are the gold standard for ventricular defibrillation but are associated with pain and tissue damage. We hypothesized that targeting the excitable gap (EG) of reentry with low-energy surface stimulation is a less damaging and painless alternative for ventricular defibrillation. OBJECTIVE: The purpose of this study was to determine the conditions under which low-energy surface stimulation defibrillates large mammalian ventricles. METHODS: Low-energy surface stimulation was delivered with five electrodes that were 7 cm long and placed 1-2 cm apart on the endocardial and epicardial surfaces of perfused pig left ventricle (LV). Rapid pacing (>4 Hz) was used to induce reentry from a single electrode. A 2 ms defibrillation pulse ≤0.5 A was delivered from all electrodes with a varied time delay from the end of the induction protocol (0.1-5 seconds). Optical mapping was performed and arrhythmia dynamics analyzed. For mechanistic insight, simulations of the VF induction and defibrillation protocols were performed in silico with an LV model emulating the experimental conditions and electrodes placed 0.25-2 cm apart. RESULTS: In living LV, reentry was induced with varying complexity and dominant frequencies ranging between 3.5 to 6.2 Hz over 8 seconds postinitiation. Low-energy defibrillation was achieved with energy <60 mJ and electrode separations up to 2 cm for less complex arrhythmia. In simulations, defibrillation consistently occurred when stimulation captured >75% of the EG, which blocked reentry <2.9 mm in front of the leading reentrant wavefront. CONCLUSION: Defibrillation with low-energy, single-pulse surface stimulation is feasible with energies below the human pain threshold (100 mJ). Optimal defibrillation occurs when arrhythmia complexity is minimal and electrodes capture >75% of the EG.


Subject(s)
Electric Countershock/methods , Ventricular Fibrillation/therapy , Animals , Swine
6.
Comput Biol Med ; 141: 105133, 2022 02.
Article in English | MEDLINE | ID: mdl-34954609

ABSTRACT

BACKGROUND: During ventricular fibrillation (VF), targeting the excitable gap (EG) of reentry throughout the myocardium with low-energy surface stimulation shows promise for painless defibrillation. However, the Purkinje network may provide alternative pathways for reentry to evade termination. This study investigates the role of the Purkinje network in painless defibrillation. METHODS: In a computational human biventricular model featuring a Purkinje network, VF was initiated with 4 Hz epicardial pacing. Defibrillation was attempted by stimulating myocardial surface EG with a low-energy 2 ms duration pulse at 2x stimulus capture, which was administered at coupling intervals incremented by 0.25 s between 0.25 and 5 s after VF initiation. Defibrillation was accomplished if reentry ceased ≤ 1 s after the defibrillation pulse. The protocol was repeated with the Purkinje network and myocardial surface EG stimulated simultaneously, and again after uncoupling the Purkinje network from the myocardium. RESULTS: VF with the Purkinje network coupled and uncoupled had comparable dominant frequency in the left (3.81 ± 0.44 versus 3.77 ± 0.53 Hz) and right (3.80 ± 0.37 versus 3.76 ± 0.48 Hz) ventricles. When uncoupling the Purkinje network, myocardial surface EG stimulation terminated VF for all defibrillation pulses. When coupled, myocardial EG surface stimulation terminated VF for only 55% of the defibrillation pulses, but improved to 100% when stimulated simultaneously with Purkinje network EG. Defibrillation failures were attributed to EG evading stimulation in the Purkinje network. CONCLUSIONS: Defibrillation that exclusively targets myocardium can fail due to accessory pathways in the Purkinje network that allow for reentrant activity to evade termination and maintain VF. Painless defibrillation strategies should be adapted to include the Purkinje network.


Subject(s)
Electric Countershock , Heart Ventricles , Ventricular Fibrillation , Electric Countershock/methods , Heart Ventricles/physiopathology , Humans , Myocardium , Ventricular Fibrillation/therapy
7.
Med Image Anal ; 71: 102080, 2021 07.
Article in English | MEDLINE | ID: mdl-33975097

ABSTRACT

Cardiac digital twins (Cardiac Digital Twin (CDT)s) of human electrophysiology (Electrophysiology (EP)) are digital replicas of patient hearts derived from clinical data that match like-for-like all available clinical observations. Due to their inherent predictive potential, CDTs show high promise as a complementary modality aiding in clinical decision making and also in the cost-effective, safe and ethical testing of novel EP device therapies. However, current workflows for both the anatomical and functional twinning phases within CDT generation, referring to the inference of model anatomy and parameters from clinical data, are not sufficiently efficient, robust and accurate for advanced clinical and industrial applications. Our study addresses three primary limitations impeding the routine generation of high-fidelity CDTs by introducing; a comprehensive parameter vector encapsulating all factors relating to the ventricular EP; an abstract reference frame within the model allowing the unattended manipulation of model parameter fields; a novel fast-forward electrocardiogram (Electrocardiogram (ECG)) model for efficient and bio-physically-detailed simulation required for parameter inference. A novel workflow for the generation of CDTs is then introduced as an initial proof of concept. Anatomical twinning was performed within a reasonable time compatible with clinical workflows (<4h) for 12 subjects from clinically-attained magnetic resonance images. After assessment of the underlying fast forward ECG model against a gold standard bidomain ECG model, functional twinning of optimal parameters according to a clinically-attained 12 lead ECG was then performed using a forward Saltelli sampling approach for a single subject. The achieved results in terms of efficiency and fidelity demonstrate that our workflow is well-suited and viable for generating biophysically-detailed CDTs at scale.


Subject(s)
Electrocardiography , Electrophysiologic Techniques, Cardiac , Computer Simulation , Heart , Heart Ventricles , Humans
8.
Heart Rhythm ; 18(2): 278-287, 2021 02.
Article in English | MEDLINE | ID: mdl-33031961

ABSTRACT

BACKGROUND: Torsades de pointes arrhythmia is a potentially lethal polymorphic ventricular tachyarrhythmia (pVT) in the setting of long QT syndrome. Arrhythmia susceptibility is influenced by risk factors modifying repolarization. OBJECTIVE: The purpose of this article was to characterize repolarization duration and heterogeneity in relation to pVT inducibility and maintenance. METHODS: Sotalol was infused regionally or globally in isolated Langendorff blood-perfused pig hearts (N = 7) to create repolarization time (RT) heterogeneities. Programmed stimulation and epicardial activation and repolarization mapping were performed. The role of RT (heterogeneities) was studied in more detail using a computer model of the human heart. RESULTS: pVTs (n = 11) were inducible at a critical combination of RT and RT heterogeneities. The pVT cycle lengths were similar in the short and long RT regions. Short-lasting pVTs were maintained by focal activity while longer-lasting pVTs by reentry wandering along the interface between the 2 regions. Local restitution curves from the long and short RT regions crossed. This was associated with T-wave inversion at coupling intervals at either side of the crossing point. These experimental observations were confirmed by the computer simulations. CONCLUSION: pVTs are inducible within a critical range of RT and RT heterogeneities and are maintained by reentry wandering along the repolarization gradient. Double potentials localize at the core of the reentrant circuit and reflect phase singularities. RT gradient and T waves invert with short-coupled premature beats in the long RT region as a result of the crossing of the restitution curves allowing reentry initiation.


Subject(s)
Heart Conduction System/physiopathology , Heart Rate/physiology , Long QT Syndrome/physiopathology , Torsades de Pointes/complications , Action Potentials/physiology , Animals , Disease Models, Animal , Electrocardiography , Long QT Syndrome/etiology , Swine , Torsades de Pointes/physiopathology
9.
ACS Appl Bio Mater ; 3(5): 3114-3122, 2020 May 18.
Article in English | MEDLINE | ID: mdl-35025355

ABSTRACT

Stretchable conductive fabric (SCF) is a durable nontoxic textile material coated or blended with conductive metals. Unlike solid metal, SCF effectively conducts electricity with low resistance and maintains conductance when stretched. Thus, we hypothesized that SCF electrodes are more suitable for cardiac electrophysiology applications in beating hearts than traditional solid metal electrodes. Accordingly, we developed a straightforward protocol for fabricating customized SCF electrodes and then assessed their ability to electrically stimulate and record electrical signals from beating hearts. Compared to flexible copper electrodes, SCF electrodes had similar electrical resistance (112.50 ± 25.81 vs 157.85 ± 17.06 Ω, p = 0.09), activated cardiac tissue with lower stimulus strength (27.25 ± 3.52 vs 15.35 ± 2.15 mA, p = 0.0001), recorded stable electrograms with a higher signal-to-noise ratio (20.54 ± 1.09 vs 13.35 ± 1.46 dB, p = 0.04), and were noncorrosive and harmless to cardiac tissue or vasculature. These results support the use of SCF over metal electrodes for a wide range of cardiac electrophysiology applications in the beating heart.

10.
Sci Rep ; 9(1): 15863, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31676789

ABSTRACT

The epicardial and endocardial surfaces of the heart are attractive targets to administer antiarrhythmic electrotherapies. Electrically stimulating wide areas of the surfaces of small mammalian ventricles is straightforward given the relatively small scale of their myocardial dimensions compared to the tissue space constant and electrical field. However, it has yet to be proven for larger mammalian hearts with tissue properties and ventricular dimensions closer to humans. Our goal was to address the feasibility and impact of wide-area electrical stimulation on the ventricular surfaces of large mammalian hearts at different stimulus strengths. This was accomplished by placing long line electrodes on the ventricular surfaces of pig hearts that span wide areas, and activating them individually. Stimulus efficacy was assessed and compared between surfaces, and tissue viability was evaluated. Activation time was dependent on stimulation strength and location, achieving uniform linear stimulation at 9x threshold strength. Endocardial stimulation activated more tissue transmurally than epicardial stimulation, which could be considered a potential target for future cardiac electrotherapies. Overall, our results indicate that electrically stimulating wide areas of the ventricular surfaces of large mammals is achievable with line electrodes, minimal tissue damage, and energies under the human pain threshold (100 mJ).


Subject(s)
Action Potentials , Electric Stimulation Therapy , Heart Conduction System/physiopathology , Myocardial Contraction , Myocardium , Animals , Electric Stimulation , Heart Ventricles/physiopathology , Swine
11.
Front Physiol ; 10: 1105, 2019.
Article in English | MEDLINE | ID: mdl-31551802

ABSTRACT

BACKGROUND: Acetylcholine (ACh) shortens action potential duration (APD) in human atria. APD shortening facilitates atrial fibrillation (AF) by reducing the wavelength for reentry. However, the influence of ACh on electrical conduction in human atria and its contribution to AF are unclear, particularly when combined with impaired conduction from interstitial fibrosis. OBJECTIVE: To investigate the effect of ACh on human atrial conduction and its role in AF with computational, experimental, and clinical approaches. METHODS: S1S2 pacing (S1 = 600 ms and S2 = variable cycle lengths) was applied to the following human AF computer models: a left atrial appendage (LAA) myocyte to quantify the effects of ACh on APD, maximum upstroke velocity (V max ), and resting membrane potential (RMP); a monolayer of LAA myocytes to quantify the effects of ACh on conduction; and 3) an intact left atrium (LA) to determine the effects of ACh on arrhythmogenicity. Heterogeneous ACh and interstitial fibrosis were applied to the monolayer and LA models. To corroborate the simulations, APD and RMP from isolated human atrial myocytes were recorded before and after 0.1 µM ACh. At the tissue level, LAAs from AF patients were optically mapped ex vivo using Di-4-ANEPPS. The difference in total activation time (AT) was determined between AT initially recorded with S1 pacing, and AT recorded during subsequent S1 pacing without (n = 6) or with (n = 7) 100 µM ACh. RESULTS: In LAA myocyte simulations, S1 pacing with 0.1 µM ACh shortened APD by 41 ms, hyperpolarized RMP by 7 mV, and increased V max by 27 mV/ms. In human atrial myocytes, 0.1 µM ACh shortened APD by 48 ms, hyperpolarized RMP by 3 mV, and increased V max by 6 mV/ms. In LAA monolayer simulations, S1 pacing with ACh hyperpolarized RMP to delay total AT by 32 ms without and 35 ms with fibrosis. This led to unidirectional conduction block and sustained reentry in fibrotic LA with heterogeneous ACh during S2 pacing. In AF patient LAAs, S1 pacing with ACh increased total AT from 39.3 ± 26 ms to 71.4 ± 31.2 ms (p = 0.036) compared to no change without ACh (56.7 ± 29.3 ms to 50.0 ± 21.9 ms, p = 0.140). CONCLUSION: In fibrotic atria with heterogeneous parasympathetic activation, ACh facilitates AF by shortening APD and slowing conduction to promote unidirectional conduction block and reentry.

12.
Front Physiol ; 9: 1207, 2018.
Article in English | MEDLINE | ID: mdl-30246796

ABSTRACT

The mechanisms underlying atrial fibrillation (AF), the most common sustained cardiac rhythm disturbance, remain elusive. Atrial fibrosis plays an important role in the development of AF and rotor dynamics. Both electrical wavelength (WL) and the degree of atrial fibrosis change as AF progresses. However, their combined effect on rotor core location remains unknown. The aim of this study was to analyze the effects of WL change on rotor core location in both fibrotic and non-fibrotic atria. Three patient specific fibrosis distributions (total fibrosis content: 16.6, 22.8, and 19.2%) obtained from clinical imaging data of persistent AF patients were incorporated in a bilayer atrial computational model. Fibrotic effects were modeled as myocyte-fibroblast coupling + conductivity remodeling; structural remodeling; ionic current changes + conductivity remodeling; and combinations of these methods. To change WL, action potential duration (APD) was varied from 120 to 240ms, representing the range of clinically observed AF cycle length, by modifying the inward rectifier potassium current (IK1) conductance between 80 and 140% of the original value. Phase singularities (PSs) were computed to identify rotor core locations. Our results show that IK1 conductance variation resulted in a decrease of APD and WL across the atria. For large WL in the absence of fibrosis, PSs anchored to regions with high APD gradient at the center of the left atrium (LA) anterior wall and near the junctions of the inferior pulmonary veins (PVs) with the LA. Decreasing the WL induced more PSs, whose distribution became less clustered. With fibrosis, PS locations depended on the fibrosis distribution and the fibrosis implementation method. The proportion of PSs in fibrotic areas and along the borders varied with both WL and fibrosis modeling method: for patient one, this was 4.2-14.9% as IK1 varied for the structural remodeling representation, but 12.3-88.4% using the combination of structural remodeling with myocyte-fibroblast coupling. The degree and distribution of fibrosis and the choice of implementation technique had a larger effect on PS locations than the WL variation. Thus, distinguishing the fibrotic mechanisms present in a patient is important for interpreting clinical fibrosis maps to create personalized models.

13.
Front Physiol ; 9: 718, 2018.
Article in English | MEDLINE | ID: mdl-29962961

ABSTRACT

Alteration of action potential duration (APD) heterogeneity contributes to arrhythmogenesis. Purkinje-muscle junctions (PMJs) present differential electrophysiological properties including longer APD. The goal of this study was to determine if Purkinje-related or myocardial focal activation modulates ventricular repolarization differentially in healthy and ischemic myocardium. Simultaneous epicardial (EPI) and endocardial (ENDO) optical mapping was performed on sheep left ventricular (LV) wedges with intact free-running Purkinje network (N = 7). Preparations were paced on either ENDO or EPI surfaces, or the free-running Purkinje fibers (PFs), mimicking normal activation. EPI and ENDO APDs were assessed for each pacing configuration, before and after (7 min) of the onset of no-flow ischemia. Experiments were supported by simulations. In control conditions, maximal APD was found at endocardial PMJ sites. We observed a significant transmural APD gradient for PF pacing with PMJ APD = 347 ± 41 ms and EPI APD = 273 ± 36 ms (p < 0.001). A similar transmural gradient was observed when pacing ENDO (49 ± 31 ms; p = 0.005). However, the gradient was reduced when pacing EPI (37 ± 20 ms; p = 0.005). Global dispersion of repolarization was the most pronounced for EPI pacing. In ischemia, both ENDO and EPI APD were reduced (p = 0.005) and the transmural APD gradient (109 ± 55 ms) was increased when pacing ENDO compared to control condition or when pacing EPI (p < 0.05). APD maxima remained localized at functional PMJs during ischemia. Local repolarization dispersion was significantly higher at the PMJ than at other sites. The results were consistent with simulations. We found that the activation sequence modulates repolarization heterogeneity in the ischemic sheep LV. PMJs remain active following ischemia and exert significant influence on local repolarization patterns.

14.
PLoS One ; 13(5): e0197273, 2018.
Article in English | MEDLINE | ID: mdl-29791480

ABSTRACT

BACKGROUND: The SCN5A mutation, P1332L, is linked to a malignant form of congenital long QT syndrome, type 3 (LQT3), and affected patients are highly responsive to the Na+ channel blocking drug, mexiletine. In contrast, A647D is an atypical SCN5A mutation causing Brugada syndrome. An asymptomatic male with both P1332L and A647D presented with varying P wave/QRS aberrancy and mild QTc prolongation which did not shorten measurably with mexiletine. OBJECTIVE: We characterized the biophysical properties of P1332L, A647D and wild-type (WT) Na+ channels as well as their combinations in order to understand our proband's phenotype and to guide mexilitine therapy. METHODS: Na+ channel biophysics and mexilitine-binding kinetics were assessed using heterologous expression studies in CHO-K1 cells and human ventricular myocyte modeling. RESULTS: Compared to WT, P1332L channels displayed a hyperpolarizing shift in inactivation, slower inactivation and prominent late Na+ currents (INa). While A647D had no effect on the biophysical properties of INa, it reduced peak and late INa density when co-expressed with either WT or P1332L. Additionally, while P1332L channels had greater sensitivity to block by mexiletine compared to WT, this was reduced in the presence of A647D. Modelling studies revealed that mixing P1332L with A647D channels, action potential durations were shortened compared to P1332L, while peak INa was reduced compared to either A647D coexpressing with WT or WT alone. CONCLUSIONS: While A647D mitigates the lethal LQT3 phenotype seen with P1332L, it also reduces mexilitine sensitivity and decreases INa density. These results explain our proband's mild repolarization abnormality and prominent conduction defect in the atria and ventricles, but also suggest that expression of P1332L with A647D yields a novel disease phenotype for which mexiletine pharmacotherapy is no longer suitable.


Subject(s)
Brugada Syndrome/genetics , Long QT Syndrome/genetics , Mutation , NAV1.5 Voltage-Gated Sodium Channel/genetics , Animals , Brugada Syndrome/drug therapy , Brugada Syndrome/metabolism , CHO Cells , Computer Simulation , Cricetulus , Humans , Long QT Syndrome/drug therapy , Long QT Syndrome/metabolism , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mexiletine/pharmacology , Mexiletine/therapeutic use , Models, Molecular , Monocytes/drug effects , Monocytes/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Phenotype , Sodium Channel Blockers/pharmacology , Sodium Channel Blockers/therapeutic use , Young Adult
15.
PLoS Comput Biol ; 14(5): e1006166, 2018 05.
Article in English | MEDLINE | ID: mdl-29795549

ABSTRACT

Success rates for catheter ablation of persistent atrial fibrillation patients are currently low; however, there is a subset of patients for whom electrical isolation of the pulmonary veins alone is a successful treatment strategy. It is difficult to identify these patients because there are a multitude of factors affecting arrhythmia susceptibility and maintenance, and the individual contributions of these factors are difficult to determine clinically. We hypothesised that the combination of pulmonary vein (PV) electrophysiology and atrial body fibrosis determine driver location and effectiveness of pulmonary vein isolation (PVI). We used bilayer biatrial computer models based on patient geometries to investigate the effects of PV properties and atrial fibrosis on arrhythmia inducibility, maintenance mechanisms, and the outcome of PVI. Short PV action potential duration (APD) increased arrhythmia susceptibility, while longer PV APD was found to be protective. Arrhythmia inducibility increased with slower conduction velocity (CV) at the LA/PV junction, but not for cases with homogeneous CV changes or slower CV at the distal PV. Phase singularity (PS) density in the PV region for cases with PV fibrosis was increased. Arrhythmia dynamics depend on both PV properties and fibrosis distribution, varying from meandering rotors to PV reentry (in cases with baseline or long APD), to stable rotors at regions of high fibrosis density. Measurement of fibrosis and PV properties may indicate patient specific susceptibility to AF initiation and maintenance. PV PS density before PVI was higher for cases in which AF terminated or converted to a macroreentry; thus, high PV PS density may indicate likelihood of PVI success.


Subject(s)
Atrial Fibrillation/physiopathology , Computer Simulation , Fibrosis/physiopathology , Models, Cardiovascular , Pulmonary Veins/physiopathology , Action Potentials/physiology , Cardiac Electrophysiology , Catheter Ablation , Heart Atria/physiopathology , Humans
16.
Circ Arrhythm Electrophysiol ; 10(5): e004899, 2017 May.
Article in English | MEDLINE | ID: mdl-28500175

ABSTRACT

BACKGROUND: Recent studies have demonstrated conflicting mechanisms underlying atrial fibrillation (AF), with the spatial resolution of data often cited as a potential reason for the disagreement. The purpose of this study was to investigate whether the variation in spatial resolution of mapping may lead to misinterpretation of the underlying mechanism in persistent AF. METHODS AND RESULTS: Simulations of rotors and focal sources were performed to estimate the minimum number of recording points required to correctly identify the underlying AF mechanism. The effects of different data types (action potentials and unipolar or bipolar electrograms) and rotor stability on resolution requirements were investigated. We also determined the ability of clinically used endocardial catheters to identify AF mechanisms using clinically recorded and simulated data. The spatial resolution required for correct identification of rotors and focal sources is a linear function of spatial wavelength (the distance between wavefronts) of the arrhythmia. Rotor localization errors are larger for electrogram data than for action potential data. Stationary rotors are more reliably identified compared with meandering trajectories, for any given spatial resolution. All clinical high-resolution multipolar catheters are of sufficient resolution to accurately detect and track rotors when placed over the rotor core although the low-resolution basket catheter is prone to false detections and may incorrectly identify rotors that are not present. CONCLUSIONS: The spatial resolution of AF data can significantly affect the interpretation of the underlying AF mechanism. Therefore, the interpretation of human AF data must be taken in the context of the spatial resolution of the recordings.


Subject(s)
Action Potentials , Atrial Fibrillation/diagnosis , Electrocardiography , Electrophysiologic Techniques, Cardiac , Heart Conduction System/physiopathology , Heart Rate , Models, Cardiovascular , Patient-Specific Modeling , Atrial Fibrillation/etiology , Atrial Fibrillation/physiopathology , Cardiac Catheterization/instrumentation , Cardiac Catheters , Electrocardiography/instrumentation , Electrophysiologic Techniques, Cardiac/instrumentation , Equipment Design , Humans , Predictive Value of Tests , Reproducibility of Results , Signal Processing, Computer-Assisted , Time Factors
17.
Europace ; 18(suppl 4): iv146-iv155, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28011842

ABSTRACT

AIMS: Catheter ablation is an effective technique for terminating atrial arrhythmia. However, given a high atrial fibrillation (AF) recurrence rate, optimal ablation strategies have yet to be defined. Computer modelling can be a powerful aid but modelling of fibrosis, a major factor associated with AF, is an open question. Several groups have proposed methodologies based on imaging data, but no comparison to determine which methodology best corroborates clinically observed reentrant behaviour has been performed. We examined several methodologies to determine the best method for capturing fibrillation dynamics. METHODS AND RESULTS: Patient late gadolinium-enhanced magnetic resonance imaging data were transferred onto a bilayer atrial computer model and used to assign fibrosis distributions. Fibrosis was modelled as conduction disturbances (lower conductivity, edge splitting, or percolation), transforming growth factor-ß1 ionic channel effects, myocyte-fibroblast coupling, and combinations of the preceding. Reentry was induced through pulmonary vein ectopy and the ensuing rotor dynamics characterized. Non-invasive electrocardiographic imaging data of the patients in AF was used for comparison. Electrograms were computed and the fractionation durations measured over the surface. Edge splitting produced more phase singularities from wavebreaks than the other representations. The number of phase singularities seen with percolation was closer to the clinical values. Addition of fibroblast coupling had an organizing effect on rotor dynamics. Simple tissue conductivity changes with ionic changes localized rotors over fibrosis which was not observed with clinical data. CONCLUSION: The specific representation of fibrosis has a large effect on rotor dynamics and needs to be carefully considered for patient specific modelling.


Subject(s)
Atrial Fibrillation/diagnosis , Atrial Function , Electrophysiologic Techniques, Cardiac/methods , Heart Atria/physiopathology , Models, Cardiovascular , Patient-Specific Modeling , Action Potentials , Atrial Fibrillation/pathology , Atrial Fibrillation/physiopathology , Electrocardiography , Fibrosis , Heart Atria/pathology , Heart Rate , Humans , Magnetic Resonance Imaging , Predictive Value of Tests , Prognosis , Signal Processing, Computer-Assisted
18.
Front Physiol ; 7: 108, 2016.
Article in English | MEDLINE | ID: mdl-27148061

ABSTRACT

Pulmonary vein isolation (PVI) with radiofrequency ablation (RFA) is the cornerstone of atrial fibrillation (AF) therapy, but few strategies exist for when it fails. To guide RFA, phase singularity (PS) mapping locates reentrant electrical waves (rotors) that perpetuate AF. The goal of this study was to test existing and develop new RFA strategies for terminating rotors identified with PS mapping. It is unsafe to test experimental RFA strategies in patients, so they were evaluated in silico using a bilayer computer model of the human atria with persistent AF (pAF) electrical (ionic) and structural (fibrosis) remodeling. pAF was initiated by rapidly pacing the right (RSPV) and left (LSPV) superior pulmonary veins during sinus rhythm, and rotor dynamics quantified by PS analysis. Three RFA strategies were studied: (i) PVI, roof, and mitral lines; (ii) circles, perforated circles, lines, and crosses 0.5-1.5 cm in diameter/length administered near rotor locations/pathways identified by PS mapping; and (iii) 4-8 lines streamlining the sequence of electrical activation during sinus rhythm. As in pAF patients, 2 ± 1 rotors with cycle length 185 ± 4 ms and short PS duration 452 ± 401 ms perpetuated simulated pAF. Spatially, PS density had weak to moderate positive correlations with fibrosis density (RSPV: r = 0.38, p = 0.35, LSPV: r = 0.77, p = 0.02). RFA PVI, mitral, and roof lines failed to terminate pAF, but RFA perforated circles and lines 1.5 cm in diameter/length terminated meandering rotors from RSPV pacing when placed at locations with high PS density. Similarly, RFA circles, perforated circles, and crosses 1.5 cm in diameter/length terminated stationary rotors from LSPV pacing. The most effective strategy for terminating pAF was to streamline the sequence of activation during sinus rhythm with >4 RFA lines. These results demonstrate that co-localizing 1.5 cm RFA lesions with locations of high PS density is a promising strategy for terminating pAF rotors. For patients immune to PVI, roof, mitral, and PS guided RFA strategies, streamlining patient-specific activation sequences during sinus rhythm is a robust but challenging alternative.

19.
J Physiol ; 594(23): 6879-6891, 2016 12 01.
Article in English | MEDLINE | ID: mdl-26941055

ABSTRACT

KEY POINTS: Optogenetics-based defibrillation, a theoretical alternative to electrotherapy, involves expression of light-sensitive ion channels in the heart (via gene or cell therapy) and illumination of the cardiac surfaces (via implanted LED arrays) to elicit light-induced activations. We used a biophysically detailed human ventricular model to determine whether such a therapy could terminate fibrillation (VF) and identify which combinations of light-sensitive ion channel properties and illumination configurations would be effective. Defibrillation was successful when a large proportion (> 16.6%) of ventricular tissue was directly stimulated by light that was bright enough to induce an action potential in an uncoupled cell. While illumination with blue light never successfully terminated VF, illumination of red light-sensitive ion channels with dense arrays of implanted red light sources resulted in successful defibrillation. Our results suggest that cardiac expression of red light-sensitive ion channels is necessary for the development of effective optogenetics-based defibrillation therapy using LED arrays. ABSTRACT: Optogenetics-based defibrillation has been proposed as a novel and potentially pain-free approach to enable cardiomyocyte-selective defibrillation in humans, but the feasibility of such a therapy remains unknown. This study aimed to (1) assess the feasibility of terminating sustained ventricular fibrillation (VF) via light-induced excitation of opsins expressed throughout the myocardium and (2) identify the ideal (theoretically possible) opsin properties and light source configurations that would maximise therapeutic efficacy. We conducted electrophysiological simulations in an MRI-based human ventricular model with VF induced by rapid pacing; light sensitisation via systemic, cardiac-specific gene transfer of channelrhodopsin-2 (ChR2) was simulated. In addition to the widely used blue light-sensitive ChR2-H134R, we also modelled theoretical ChR2 variants with augmented light sensitivity (ChR2+), red-shifted spectral sensitivity (ChR2-RED) or both (ChR2-RED+). Light sources were modelled as synchronously activating LED arrays (LED radius: 1 mm; optical power: 10 mW mm-2 ; array density: 1.15-4.61 cm-2 ). For each unique optogenetic configuration, defibrillation was attempted with two different optical pulse durations (25 and 500 ms). VF termination was only successful for configurations involving ChR2-RED and ChR2-RED+ (for LED arrays with density ≥ 2.30 cm-2 ), suggesting that opsin spectral sensitivity was the most important determinant of optogenetic defibrillation efficacy. This was due to the deeper penetration of red light in cardiac tissue compared with blue light, which resulted in more widespread light-induced propagating wavefronts. Longer pulse duration and higher LED array density were associated with increased optogenetic defibrillation efficacy. In all cases observed, the defibrillation mechanism was light-induced depolarisation of the excitable gap, which led to block of reentrant wavefronts.


Subject(s)
Heart/radiation effects , Ventricular Fibrillation/therapy , Channelrhodopsins , Computer Simulation , Humans , Light , Optogenetics , Patient-Specific Modeling
20.
PLoS Comput Biol ; 10(12): e1004011, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25501557

ABSTRACT

Atrial fibrillation (AF) is the most common cardiac arrhythmia, but our knowledge of the arrhythmogenic substrate is incomplete. Alternans, the beat-to-beat alternation in the shape of cardiac electrical signals, typically occurs at fast heart rates and leads to arrhythmia. However, atrial alternans have been observed at slower pacing rates in AF patients than in controls, suggesting that increased vulnerability to arrhythmia in AF patients may be due to the proarrythmic influence of alternans at these slower rates. As such, alternans may present a useful therapeutic target for the treatment and prevention of AF, but the mechanism underlying alternans occurrence in AF patients at heart rates near rest is unknown. The goal of this study was to determine how cellular changes that occur in human AF affect the appearance of alternans at heart rates near rest. To achieve this, we developed a computational model of human atrial tissue incorporating electrophysiological remodeling associated with chronic AF (cAF) and performed parameter sensitivity analysis of ionic model parameters to determine which cellular changes led to alternans. Of the 20 parameters tested, only decreasing the ryanodine receptor (RyR) inactivation rate constant (kiCa) produced action potential duration (APD) alternans seen clinically at slower pacing rates. Using single-cell clamps of voltage, fluxes, and state variables, we determined that alternans onset was Ca2+-driven rather than voltage-driven and occurred as a result of decreased RyR inactivation which led to increased steepness of the sarcoplasmic reticulum (SR) Ca2+ release slope. Iterated map analysis revealed that because SR Ca2+ uptake efficiency was much higher in control atrial cells than in cAF cells, drastic reductions in kiCa were required to produce alternans at comparable pacing rates in control atrial cells. These findings suggest that RyR kinetics may play a critical role in altered Ca2+ homeostasis which drives proarrhythmic APD alternans in patients with AF.


Subject(s)
Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Calcium/metabolism , Models, Cardiovascular , Action Potentials , Calcium Signaling/physiology , Heart Atria/metabolism , Heart Atria/physiopathology , Humans , Ryanodine Receptor Calcium Release Channel
SELECTION OF CITATIONS
SEARCH DETAIL
...