Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 13(1): 206-217, 2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33325939

ABSTRACT

Understanding how to control the nucleation and growth rates is crucial for designing nanoparticles with specific sizes and shapes. In this study, we show that the nucleation and growth rates are correlated with the thermodynamics of metal-ligand/solvent binding for the pre-reduction complex and the surface of the nanoparticle, respectively. To obtain these correlations, we measured the nucleation and growth rates by in situ small angle X-ray scattering during the synthesis of colloidal Pd nanoparticles in the presence of trioctylphosphine in solvents of varying coordinating ability. The results show that the nucleation rate decreased, while the growth rate increased in the following order, toluene, piperidine, 3,4-lutidine and pyridine, leading to a large increase in the final nanoparticle size (from 1.4 nm in toluene to 5.0 nm in pyridine). Using density functional theory (DFT), complemented by 31P nuclear magnetic resonance and X-ray absorption spectroscopy, we calculated the reduction Gibbs free energies of the solvent-dependent dominant pre-reduction complex and the solvent-nanoparticle binding energy. The results indicate that lower nucleation rates originate from solvent coordination which stabilizes the pre-reduction complex and increases its reduction free energy. At the same time, DFT calculations suggest that the solvent coordination affects the effective capping of the surface where stronger binding solvents slow the nanoparticle growth by lowering the number of active sites (not already bound by trioctylphosphine). The findings represent a promising advancement towards understanding the microscopic connection between the metal-ligand thermodynamic interactions and the kinetics of nucleation and growth to control the size of colloidal metal nanoparticles.

2.
Nano Lett ; 19(11): 7852-7858, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31573819

ABSTRACT

We present experimental results confirming extreme quantum confinement in GaN/AlxGa1-xN (x = 0.65 and 1.0) nanowire and planar heterostructures, where the GaN layer thickness is of the order of a monolayer. The results were obtained from temperature- and excitation-dependent and time-resolved photoluminescence measurements. In the GaN/AlN nanowire heterostructure array sample, the measured emission peak at 300 K is ∼5.18-5.28 eV. This is in excellent agreement with the calculated optical gap of 5.23 eV and 160-260 meV below the calculated electronic gap of 5.44 eV, suggesting that the observed emission is excitonic in nature with an exciton binding energy of ∼160-260 meV. Similarly, in the monolayer GaN/Al0.65Ga0.35N planar heterostructure, the measured emission peak at 300 K is 4.785 eV and in good agreement with the calculated optical gap of 4.68 eV and 95 meV below the calculated electronic gap of 4.88 eV. The estimated exciton binding energy is 95 meV and in close agreement with our theoretical calculations. Excitation-dependent and time-resolved photoluminescence data support the presence of excitonic transitions. Our results indicate that deep-ultraviolet excitonic light sources and microcavity devices can be realized with heterostructures incorporating monolayer-thick GaN.

3.
Nano Lett ; 17(12): 7345-7349, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29068214

ABSTRACT

Gallium nitride (GaN) is an important commercial semiconductor for solid-state lighting applications. Atomically thin GaN, a recently synthesized two-dimensional material, is of particular interest because the extreme quantum confinement enables additional control of its light-emitting properties. We performed first-principles calculations based on density functional and many-body perturbation theory to investigate the electronic, optical, and excitonic properties of monolayer and bilayer two-dimensional (2D) GaN as a function of strain. Our results demonstrate that light emission from monolayer 2D GaN is blueshifted into the deep ultraviolet range, which is promising for sterilization and water-purification applications. Light emission from bilayer 2D GaN occurs at a similar wavelength to its bulk counterpart due to the cancellation of the effect of quantum confinement on the optical gap by the quantum-confined Stark shift. Polarized light emission at room temperature is possible via uniaxial in-plane strain, which is desirable for energy-efficient display applications. We compare the electronic and optical properties of freestanding two-dimensional GaN to atomically thin GaN wells embedded within AlN barriers in order to understand how the functional properties are influenced by the presence of barriers. Our results provide microscopic understanding of the electronic and optical characteristics of GaN at the few-layer regime.

4.
Nano Lett ; 14(7): 3709-14, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24527880

ABSTRACT

Group III nitrides are widely used in commercial visible-wavelength optoelectronic devices, but materials issues such as dislocations, composition fluctuations, and strain negatively impact their efficiency. Nitride nanostructures are a promising solution to overcome these issues and to improve device performance. We used first-principles calculations based on many-body perturbation theory to study the electronic and optical properties of small-diameter InN nanowires. We show that quantum confinement in 1 nm wide InN nanowires shifts optical emission to the visible range at green/cyan wavelengths and inverts the order of the top valence bands, leading to linearly polarized visible-light emission. Quantum confinement on this scale also leads to large exciton binding energies of 1.4 eV and electronic band gaps in excess of 3.7 eV. Our results indicate that strong quantum confinement in InN nanostructures is a promising approach to developing efficient visible-wavelength light emitters.

5.
Nanotechnology ; 22(22): 225602, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21454935

ABSTRACT

An aqueous solution-based doping strategy was developed for controlled doping impurity atoms into a ZnO nanowire (NW) lattice. Through this approach, antimony-doped ZnO NWs were successfully synthesized in an aqueous solution containing zinc nitrate and hexamethylenetetramine with antimony acetate as the dopant source. By introducing glycolate ions into the solution, a soluble antimony precursor (antimony glycolate) was formed and a good NW morphology with a controlled antimony doping concentration was successfully achieved. A doping concentration study suggested an antimony glycolate absorption doping mechanism. By fabricating and characterizing NW-based field effect transistors (FETs), stable p-type conductivity was observed. A field effect mobility of 1.2 cm(2) V(-1) s(-1) and a carrier concentration of 6 × 10(17) cm(-3) were achieved. Electrostatic force microscopy (EFM) characterization on doped and undoped ZnO NWs further illustrated the shift of the metal-semiconductor barrier due to Sb doping. This work provided an effective large-scale synthesis strategy for doping ZnO NWs in aqueous solution.

SELECTION OF CITATIONS
SEARCH DETAIL
...