Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 119(19): 4473-81, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25560546

ABSTRACT

The chlorine peroxide molecule, ClOOCl, is an important participant in the chlorine-catalyzed destruction of ozone in the stratosphere. Very few laboratory measurements have been made for the partitioning between monomer ClO and dimer ClOOCl at temperatures lower than 250 K. This paper reports absorption spectra for both ClO and ClOOCl when they are in equilibrium at 1 atm and temperatures down to 206 K. The very low ClO concentrations involved requires measuring and calibrating a differential cross section, ΔσClO, for the 10-0 band of ClO. A third law fit of the new results gives Keq = [(2.01 ± 0.17) 10­27 cm3 molecule­1] e(8554∓21)K/T, where the error limits reflect the uncertainty in the entropy change. The resulting equilibrium constants are slightly lower than currently recommended. The slope of the van't Hoff plot yields a value for the enthalpy of formation of ClOOCl at 298 K, ΔHfo, of 129.8 ± 0.6 kJ mol­1. Uncertainties in the absolute ultraviolet cross sections of ClOOCl and ClO appear to be the limiting factors in these measurements. The new Keq parameters are consistent with the measurements of Santee et al.42 in the stratosphere.

2.
J Phys Chem A ; 118(4): 741-7, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24400595

ABSTRACT

While generating the CH2OO molecule by reacting CH2I with O2, significant amounts of the OH radical were observed by laser-induced fluorescence. At least two different processes formed OH. A fast process was probably initiated by a reaction of vibrationally hot CH2I radicals. The second process appeared to be associated with the decay of the CH2OO molecule. The addition of molecules known to react with CH2OO increased the observed decay rates of the OH signal. Using the OH signals as a proxy for the CH2OO concentration, the rate constant for the reaction of hexafluoroacetone with CH2OO was determined to be (3.33 ± 0.27) × 10(-11) cm(3) molecule(-1) s(-1), in good agreement with the value measured by Taatjes et al.1 The rate constant for the reaction of SO2 with CH2OO, (3.53 ± 0.29) × 10(-11) cm(3) molecule(-1) s(-1), showed no pressure dependence over the range of 50-200 Torr and was in agreement with the value at 4 Torr reported by Welz et al.

3.
J Phys Chem A ; 111(20): 4322-32, 2007 May 24.
Article in English | MEDLINE | ID: mdl-17474723

ABSTRACT

The photolysis of chlorine peroxide (ClOOCl) is understood to be a key step in the destruction of polar stratospheric ozone. This study generated and purified ClOOCl in a novel fashion, which resulted in spectra with low impurity levels and high peak absorbances. The ClOOCl was generated by laser photolysis of Cl2 in the presence of ozone, or by photolysis of ozone in the presence of CF2Cl2. The product ClOOCl was collected, along with small amounts of impurities, in a trap at about -125 degrees C. Gas-phase ultraviolet spectra were recorded using a long path cell and spectrograph/diode array detector as the trap was slowly warmed. The spectrum of ClOOCl could be fit with two Gaussian-like expressions, corresponding to two different electronic transitions, having similar energies but different widths. The energies and band strengths of these two transitions compare favorably with previous ab initio calculations. The cross sections of ClOOCl at wavelengths longer than 300 nm are significantly lower than all previous measurements or estimates. These low cross sections in the photolytically active region of the solar spectrum result in a rate of photolysis of ClOOCl in the stratosphere that is much lower than currently recommended. For conditions representative of the polar vortex (solar zenith angle of 86 degrees, 20 km altitude, and O3 and temperature profiles measured in March 2000) calculated photolysis rates are a factor of 6 lower than the current JPL/NASA recommendation. This large discrepancy calls into question the completeness of present atmospheric models of polar ozone depletion.

4.
J Phys Chem A ; 109(13): 3045-51, 2005 Apr 07.
Article in English | MEDLINE | ID: mdl-16833628

ABSTRACT

When bromoform (CHBr3) is photolyzed at 266 or 303 nm in the presence of O2 and NO, the formation of secondary Br atoms is observed. By following the rate of growth of this secondary Br atom signal as a function of conditions, rate constants have been determined for the reactions CHBr2 + O2, CHBr2 + NO (both pressure-dependent), and CHBr2O2 + NO (k(2a) = (1.74 +/- 0.16) x 10(-11) cm3 molecule(-1) s(-1) at 23 degrees C). By measuring the amplitude of the secondary Br signal compared to the primary Br formed in the initial photolysis, it is established that the CHBr2O radical spontaneously decomposes to form CHBrO + Br at least 90%, and probably 100%, of the time, in agreement with previous work and with recent ab initio calculations. A survey of four other polybrominated methanes, CH2Br2, CHClBr2, CF2Br2, and CBr4, shows that they all generate secondary Br atoms when photolyzed at 266 nm in the presence of O2 and NO, suggesting that their reaction sequences are similar to that of bromoform.


Subject(s)
Nitric Oxide/chemistry , Oxygen/chemistry , Trihalomethanes/chemistry , Free Radicals/chemistry , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...