Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Healthc Eng ; 2021: 2959843, 2021.
Article in English | MEDLINE | ID: mdl-34326976

ABSTRACT

In recent years, point-of-care testing has played an important role in immunoassay, biochemical analysis, and molecular diagnosis, especially in low-resource settings. Among various point-of-care-testing platforms, microfluidic chips have many outstanding advantages. Microfluidic chip applies the technology of miniaturizing conventional laboratory which enables the whole biochemical process including reagent loading, reaction, separation, and detection on the microchip. As a result, microfluidic platform has become a hotspot of research in the fields of food safety, health care, and environmental monitoring in the past few decades. Here, the state-of-the-art application of microfluidics in immunoassay in the past decade will be reviewed. According to different driving forces of fluid, microfluidic platform is divided into two parts: passive manipulation and active manipulation. In passive manipulation, we focus on the capillary-driven microfluidics, while in active manipulation, we introduce pressure microfluidics, centrifugal microfluidics, electric microfluidics, optofluidics, magnetic microfluidics, and digital microfluidics. Additionally, within the introduction of each platform, innovation of the methods used and their corresponding performance improvement will be discussed. Ultimately, the shortcomings of different platforms and approaches for improvement will be proposed.


Subject(s)
Microfluidics , Humans , Immunoassay , Oligonucleotide Array Sequence Analysis
2.
Talanta ; 227: 122207, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33714475

ABSTRACT

Since December 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused millions of deaths and seriously threatened the safety of human life; indeed, this situation is worsening and many people are infected with the new coronavirus every day. Therefore, it is very important to understand patients' degree of infection and infection history through antibody testing. Such information is useful also for the government and hospitals to formulate reasonable prevention policies and treatment plans. In this paper, we develop a lateral flow immunoassay (LFIA) method based on superparamagnetic nanoparticles (SMNPs) and a giant magnetoresistance (GMR) sensing system for the simultaneously quantitative detection of anti-SARS-CoV-2 immunoglobulin M (IgM) and G (IgG). A simple and time-effective co-precipitation method was utilized to prepare the SMNPs, which have good dispersibility and magnetic property, with an average diameter of 68 nm. The Internet of Medical Things-supported GMR could transmit medical data to a smartphone through the Bluetooth protocol, making patient information available for medical staff. The proposed GMR system, based on SMNP-supported LFIA, has an outstanding advantage in cost-effectiveness and time-efficiency, and is easy to operate. We believe that the suggested GMR based LFIA system will be very useful for medical staff to analyze and to preserve as a record of infection in COVID-19 patients.


Subject(s)
Antibodies, Viral/blood , Immunoassay/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , SARS-CoV-2/immunology , Animals , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Antibodies, Viral/immunology , Cattle , Cell Phone , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Internet of Things , Limit of Detection , Magnetic Iron Oxide Nanoparticles/chemistry , Magnetic Phenomena
3.
Biosens Bioelectron ; 165: 112340, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32729483

ABSTRACT

Biosensing platforms for detecting and quantifying biomarkers have played an important role in the past decade. Among them, platforms based on magnetoresistance (MR) sensing technology are attractive. The resistance value of the material changes with the externally applied magnetic field is the core mechanism of MR sensing technology. A typical MR-based sensor has the characteristics of cost-effective, simple operation, high compactness, and high sensitivity. Moreover, using magnetic nanoparticles (MNPs) as labels, MR-based sensors have the ability to overcome the high background noise of complex samples, so they are particularly suitable for point-of-care testing (POCT). However, the problem still exists. How to obtain high-throughput, that is, multiple detections of biomarkers in MR-based sensors, thereby improving detection efficiency and reducing the burden on patients is an important issue in future work. This paper reviews three MR-based detection technologies for the detection of biomarkers, i.e., anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), and tunneling magnetoresistance (TMR). Based on these three common technologies, different typical applications that include biomedical diagnosis, food safety, and environmental monitoring are presented. Furthermore, the existing MR-based detection method is better expanded to make it more in line with present detection needs by combining different advanced technologies including microfluidics, Microelectromechanical systems (MEMS), and Immunochromatographic test strips (ICTS). And then, a brief discussion of current challenges and perspectives of MR-based sensors are pointed out.


Subject(s)
Biosensing Techniques , Micro-Electrical-Mechanical Systems , Biomarkers , Humans , Magnetic Fields , Magnetics
SELECTION OF CITATIONS
SEARCH DETAIL
...