Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(72): e202302444, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37932038

ABSTRACT

1,2-Azaborinines are the BN analogues of arynes through exchange of the formal CC triple bond by an isoelectronic BN bond. The BN-arynes are an underexplored class of reactive intermediates. Dibenzo[c,e][1,2]azaborinine (10,9-BN-phenanthryne) 1 was inferred as reactive intermediate by trapping reactions. Here it is shown that 1 can be generated in the gas phase by thermolysis from the pyridine adduct of 9-azido-9-borafluorene by cleavage of the dative bond with pyridine and dinitrogen extrusion. The ionization potential of 1 is 8.2 eV with ionization resulting from the π HOMO. Under cryogenic matrix isolation conditions, 9-azido-9-borafluorene photolysis results in isomerization to the dinitrogen adduct of 1 without involvement of a triplet borylnitrene intermediate. Photochemical nitrogen extrusion from 1 ⋅ N2 is not possible and nitrogen fixation is irreversible under cryogenic conditions. In contrast, 2,4,7,9-tetra-tert-butyldibenzo[c,e][1,2]azaborinine can be photogenerated from the corresponding azidoborole precursor under cryogenic matrix isolation conditions, and nitrogen fixation is precluded due to steric hindrance. The BN stretching vibration at about 1750 cm-1 is much weaker than in typical linear diaryl iminoboranes.

2.
J Phys Chem A ; 124(47): 9777-9782, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33198459

ABSTRACT

Fusion of benzene, naphthalene, and phenalene rings with the D ring of the planar Blatter radical leads to extension of the π-system and increased spin delocalization. The effect of this π-extension and the position of the ring fusion on the electronic structure of the radicals was investigated by UV-photoelectron spectroscopy and DFT CAM-B3LYP/6-311G(d,p) method. The experimental data obtained for 3 out of 8 derivatives were correlated with DFT-derived ionization energies.

3.
Phys Chem Chem Phys ; 22(41): 23637-23644, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33111728

ABSTRACT

The electronic structure of Blatter radicals and a series of C(10)-substituted derivatives of 2-phenyl-3H-[1,2,4]triazino[5,6,1-kl]phenoxazin-3-yl (planar Blatter radicals) containing H, F, Cl, Br, CN, CF3 and OMe substituents was investigated by gas phase UV-photoelectron spectroscopy. The energy of the SOMO of the radicals, determined to be about 6.5 eV, was correlated with their electrochemical oxidation potentials, E0/+11/2, relative to the Fc/Fc+ couple in CH2Cl2 giving the correction of 6.60(1) eV. The optical band gap Eoptg ∼ 1.7 eV of the radicals yielded the electronic transport gap, Eelg, of about 2.1 eV, which is similar to the electronic parameters of pentacene. The radicals were analyzed by EPR spectroscopy and single crystal XRD methods, and all experimental data were compared to DFT computational results obtained at the CAM-B3LYP/6-311G(d,p) level of theory.

4.
J Am Chem Soc ; 134(24): 10279-85, 2012 Jun 20.
Article in English | MEDLINE | ID: mdl-22616808

ABSTRACT

We present a comprehensive electronic structure analysis of structurally simple BN heterocycles using a combined UV-photoelectron spectroscopy (UV-PES)/computational chemistry approach. Gas-phase He I photoelectron spectra of 1,2-dihydro-1,2-azaborine 1, N-Me-1,2-BN-toluene 2, and N-Me-1,3-BN-toluene 3 have been recorded, assessed by density functional theory calculations, and compared with their corresponding carbonaceous analogues benzene and toluene. The first ionization energies of these BN heterocycles are in the order N-Me-1,3-BN-toluene 3 (8.0 eV) < N-Me-1,2-BN-toluene 2 (8.45 eV) < 1,2-dihydro-1,2-azaborine 1 (8.6 eV) < toluene (8.83 eV) < benzene (9.25 eV). The computationally determined molecular dipole moments are in the order 3 (4.577 D) > 2 (2.209 D) > 1 (2.154 D) > toluene (0.349 D) > benzene (0 D) and are consistent with experimental observations. The λ(max) in the UV-vis absorption spectra are in the order 3 (297 nm) > 2 (278 nm) > 1 (269 nm) > toluene (262 nm) > benzene (255 nm). We also establish that the measured anodic peak potentials and electrophilic aromatic substitution (EAS) reactivity of BN heterocycles 1-3 are consistent with the electronic structure description determined by the combined UV-PES/computational chemistry approach.


Subject(s)
Boron Compounds/chemistry , Electrochemical Techniques , Electrons , Models, Molecular , Photoelectron Spectroscopy , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...