Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS Lett ; 590(15): 2398-407, 2016 08.
Article in English | MEDLINE | ID: mdl-27391803

ABSTRACT

Tolloid proteinases are essential for tissue patterning and extracellular matrix assembly. The members of the family differ in their substrate specificity and activity, despite sharing similar domain organization. The mechanisms underlying substrate specificity and activity are complex, with variation between family members, and depend on both multimerization and substrate interaction. In addition, enhancers, such as Twisted gastrulation (Tsg), promote cleavage of tolloid substrate, chordin, to regulate growth factor signalling. Although Tsg and mammalian tolloid (mTLD) are involved in chordin cleavage, no interaction has been detected between them, suggesting Tsg induces a change in chordin to increase susceptibility to cleavage. All members of the tolloid family bind the N terminus of latent TGFß-binding protein-1, providing support for their role in TGFß signalling.


Subject(s)
Latent TGF-beta Binding Proteins/genetics , Peptide Hydrolases/genetics , Tolloid-Like Metalloproteinases/genetics , Transforming Growth Factor beta1/genetics , Animals , Glycoproteins/genetics , Glycoproteins/metabolism , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mammals/genetics , Mice , Proteins/genetics , Signal Transduction , Substrate Specificity
2.
Sci Rep ; 6: 21456, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26902455

ABSTRACT

The mammalian tolloid family of metalloproteinases is essential for tissue patterning and extracellular matrix assembly. The four members of the family: bone morphogenetic protein-1 (BMP-1), mammalian tolloid (mTLD), tolloid-like (TLL)-1 and TLL-2 differ in their substrate specificity and activity levels, despite sharing similar domain organization. We have previously described a model of substrate exclusion by dimerisation to explain differences in the activities of monomeric BMP-1 and dimers of mTLD and TLL-1. Here we show that TLL-2, the least active member of the tolloid family, is predominantly monomeric in solution, therefore it appears unlikely that substrate exclusion via dimerisation is a mechanism for regulating TLL-2 activity. X-ray scattering and electron microscopy structural and biophysical analyses reveal an elongated shape for the monomer and flexibility in the absence of calcium. Furthermore, we show that TLL-2 can cleave chordin in vitro, similar to other mammalian tolloids, but truncated forms of TLL-2 mimicking BMP-1 are unable to cleave chordin. However, both the N- and C-terminal non-catalytic domains from all mammalian tolloids bind chordin with high affinity. The mechanisms underlying substrate specificity and activity in the tolloid family are complex with variation between family members and depend on both multimerisation and substrate interaction.


Subject(s)
Bone Morphogenetic Protein 1/chemistry , Calcium/chemistry , Glycoproteins/chemistry , Intercellular Signaling Peptides and Proteins/chemistry , Protein Interaction Domains and Motifs , Tolloid-Like Metalloproteinases/chemistry , Alternative Splicing , Animals , Bone Morphogenetic Protein 1/genetics , Bone Morphogenetic Protein 1/metabolism , Enzyme Assays , Gene Expression , Glycoproteins/genetics , Glycoproteins/metabolism , HEK293 Cells , Humans , Hydrodynamics , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Kinetics , Models, Molecular , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Tolloid-Like Metalloproteinases/genetics , Tolloid-Like Metalloproteinases/metabolism
3.
Matrix Biol ; 55: 49-62, 2016 09.
Article in English | MEDLINE | ID: mdl-26829466

ABSTRACT

Twisted gastrulation (Tsg) and chordin are secreted glycoproteins that function together as BMP (bone morphogenetic protein) antagonists to regulate BMP growth factor signalling. Chordin binds to BMPs, preventing them from interacting with their receptors and Tsg is known to strengthen this inhibitory complex. Tsg also acts as a BMP agonist by promoting cleavage of chordin by tolloid-family proteinases. Here we explore the structural mechanism through which Tsg exerts this dual activity. We have characterized the nanoscale structure of human Tsg using in-solution biomolecular analysis and show that Tsg is a globular monomer with a flattened cross shape. Tsg has a high proportion of N-linked glycans, in relation to its molecular weight, which supports a role in solubilising BMPs. Tsg binds with high affinity to the C-terminal region of chordin and was also able to inhibit BMP-7 signalling directly but did not have an effect on BMP-4 signalling. Although both Tsg and mammalian tolloid are involved in chordin cleavage, no interaction could be detected between them using surface plasmon resonance. Together these data suggest that Tsg functions as a BMP-agonist by inducing conformational change in chordin making it more susceptible to tolloid cleavage and as a BMP-antagonist either independently or via a chordin-mediated mechanism. Following single cleavage of chordin by tolloids, Tsg continues to strengthen the inhibitory complex, supporting a role for partially cleaved chordin in BMP regulation.


Subject(s)
Bone Morphogenetic Proteins/physiology , Proteins/chemistry , Animals , Cell Line , Glycoproteins/chemistry , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Mice , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Protein Structure, Quaternary , Proteins/physiology , Scattering, Small Angle , Signal Transduction , X-Ray Diffraction
4.
J Biol Chem ; 291(10): 5247-58, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26742845

ABSTRACT

Collagen VI, a collagen with uncharacteristically large N- and C-terminal non-collagenous regions, forms a distinct microfibrillar network in most connective tissues. It was long considered to consist of three genetically distinct α chains (α1, α2, and α3). Intracellularly, heterotrimeric molecules associate to form dimers and tetramers, which are then secreted and assembled to microfibrils. The identification of three novel long collagen VI α chains, α4, α5, and α6, led to the question if and how these may substitute for the long α3 chain in collagen VI assembly. Here, we studied structural features of the novel long chains and analyzed the assembly of these into tetramers and microfibrils. N- and C-terminal globular regions of collagen VI were recombinantly expressed and studied by small angle x-ray scattering (SAXS). Ab initio models of the N-terminal globular regions of the α4, α5, and α6 chains showed a C-shaped structure similar to that found for the α3 chain. Single particle EM nanostructure of the N-terminal globular region of the α4 chain confirmed the C-shaped structure revealed by SAXS. Immuno-EM of collagen VI extracted from tissue revealed that like the α3 chain the novel long chains assemble to homotetramers that are incorporated into mixed microfibrils. Moreover, SAXS models of the C-terminal globular regions of the α1, α2, α4, and α6 chains were generated. Interestingly, the α1, α2, and α4 C-terminal globular regions dimerize. These self-interactions may play a role in tetramer formation.


Subject(s)
Collagen Type IV/chemistry , Protein Multimerization , Amino Acid Sequence , Animals , HEK293 Cells , Humans , Mice , Molecular Sequence Data , Protein Folding , Protein Structure, Tertiary
5.
Biochem Soc Trans ; 43(5): 795-800, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26517884

ABSTRACT

Chordin-mediated regulation of bone morphogenetic protein (BMP) family growth factors is essential in early embryogenesis and adult homoeostasis. Chordin binds to BMPs through cysteine-rich von Willebrand factor type C (vWC) homology domains and blocks them from interacting with their cell surface receptors. These domains also self-associate and enable chordin to target related proteins to fine-tune BMP regulation. The chordin-BMP inhibitory complex is strengthened by the secreted glycoprotein twisted gastrulation (Tsg); however, inhibition is relieved by cleavage of chordin at two specific sites by tolloid family metalloproteases. As Tsg enhances this cleavage process, it serves a dual role as both promoter and inhibitor of BMP signalling. Recent developments in chordin research suggest that rather than simply being by-products, the cleavage fragments of chordin continue to play a role in BMP regulation. In particular, chordin cleavage at the C-terminus potentiates its anti-BMP activity in a type-specific manner.


Subject(s)
Bone Morphogenetic Protein Receptors/antagonists & inhibitors , Bone Morphogenetic Proteins/antagonists & inhibitors , Glycoproteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Models, Biological , Proteins/metabolism , Signal Transduction , Tolloid-Like Metalloproteinases/metabolism , Animals , Bone Morphogenetic Protein Receptors/agonists , Bone Morphogenetic Protein Receptors/chemistry , Bone Morphogenetic Protein Receptors/metabolism , Bone Morphogenetic Proteins/chemistry , Bone Morphogenetic Proteins/metabolism , Glycoproteins/chemistry , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Interaction Domains and Motifs , Protein Stability , Proteins/chemistry , Proteolysis , Tolloid-Like Metalloproteinases/chemistry
6.
J Pathol ; 222(1): 32-40, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20552716

ABSTRACT

Photoageing of human skin due to chronic exposure to ultraviolet radiation (UVR) is characterized histologically by extensive remodelling of the dermal elastic fibre system. Whilst enzymatic pathways are thought to play a major role in mediating extracellular matrix (ECM) degeneration in UV-exposed skin, the substrate specificity of UVR-up-regulated and activated matrix metalloproteinases (MMPs) is low. It is unclear, therefore, how such cell-mediated mechanisms alone could be responsible for the reported selective degradation of elastic fibre components such as fibrillin-1 and fibulin-5 during the early stages of photoageing. Here we use atomic force microscopy (AFM) and scanning transmission electron microscopy (STEM) to demonstrate that physiologically attainable doses (20-100 mJ/cm(2)) of direct UV-B radiation can induce profound, dose-dependent, changes in the structure of, and mass distribution within, isolated fibrillin microfibrils. Furthermore, using reducing and native PAGE in combination with AFM, we show that, whilst exposure to low-dose UV-B radiation significantly alters the macromolecular and quaternary structures of both UV chromophore (Cys, His, Phe, Trp and Tyr)-rich fibrillin microfibrils (fibrillin-1, 21.0%) and fibronectin dimers (fibronectin, 12.9%), similar doses have no detectable effect on UV chromophore-poor type I collagen monomers (2.2%). Analysis of the published primary amino acid sequences of 49 dermal ECM components demonstrates that most elastic fibre-associated proteins, but crucially neither elastin nor members of the collagen family, are rich in UV chromophores. We suggest, therefore, that the amino acid composition of elastic fibre-associated proteins [including the fibrillins, fibulins, latent TGFbeta binding proteins (LTBPs) and the lysyl oxidase family of enzymes (LOK/LOXLs)] may predispose them to direct degradation by UVR. As a consequence, this selective acellular photochemical pathway may play an important role in initiating and/or exacerbating cell-mediated ECM remodelling in UVR-exposed skin.


Subject(s)
Extracellular Matrix/radiation effects , Ultraviolet Rays , Animals , COS Cells , Chlorocebus aethiops , Dose-Response Relationship, Radiation , Elastic Tissue/radiation effects , Extracellular Matrix/metabolism , Extracellular Matrix/ultrastructure , Extracellular Matrix Proteins/metabolism , Fibrillin-1 , Fibrillins , Fibronectins/chemistry , Fibronectins/radiation effects , Humans , Male , Microfibrils/radiation effects , Microfibrils/ultrastructure , Microfilament Proteins/radiation effects , Microscopy, Electron, Scanning , Skin Aging/physiology , Skin Aging/radiation effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...