Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 10(4): e0226821, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35946960

ABSTRACT

The Pythium (Peronosporales, Oomycota) genus includes devastating plant pathogens that cause widespread diseases and severe crop losses. Here, we have uncovered a far greater arsenal of virulence factor-related genes in the necrotrophic Pythium myriotylum than in other Pythium plant pathogens. The genome of a plant-virulent P. myriotylum strain (~70 Mb and 19,878 genes) isolated from a diseased rhizome of ginger (Zingiber officinale) encodes the largest repertoire of putative effectors, proteases, and plant cell wall-degrading enzymes (PCWDEs) among the studied species. P. myriotylum has twice as many predicted secreted proteins than any other Pythium plant pathogen. Arrays of tandem duplications appear to be a key factor of the enrichment of the virulence factor-related genes in P. myriotylum. The transcriptomic analysis performed on two P. myriotylum isolates infecting ginger leaves showed that proteases were a major part of the upregulated genes along with PCWDEs, Nep1-like proteins (NLPs), and elicitin-like proteins. A subset of P. myriotylum NLPs were analyzed and found to have necrosis-inducing ability from agroinfiltration of tobacco (Nicotiana benthamiana) leaves. One of the heterologously produced infection-upregulated putative cutinases found in a tandem array showed esterase activity with preferences for longer-chain-length substrates and neutral to alkaline pH levels. Our results allow the development of science-based targets for the management of P. myriotylum-caused disease, as insights from the genome and transcriptome show that gene expansion of virulence factor-related genes play a bigger role in the plant parasitism of Pythium spp. than previously thought. IMPORTANCE Pythium species are oomycetes, an evolutionarily distinct group of filamentous fungus-like stramenopiles. The Pythium genus includes several pathogens of important crop species, e.g., the spice ginger. Analysis of our genome from the plant pathogen Pythium myriotylum uncovered a far larger arsenal of virulence factor-related genes than found in other Pythium plant pathogens, and these genes contribute to the infection of the plant host. The increase in the number of virulence factor-related genes appears to have occurred through the mechanism of tandem gene duplication events. Genes from particular virulence factor-related categories that were increased in number and switched on during infection of ginger leaves had their activities tested. These genes have toxic activities toward plant cells or activities to hydrolyze polymeric components of the plant. The research suggests targets to better manage diseases caused by P. myriotylum and prompts renewed attention to the genomics of Pythium plant pathogens.


Subject(s)
Pythium , Zingiber officinale , Peptide Hydrolases , Plant Diseases , Plants , Pythium/genetics , Virulence/genetics , Virulence Factors/genetics
2.
PLoS One ; 16(12): e0260438, 2021.
Article in English | MEDLINE | ID: mdl-34871297

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) was declared a pandemic in March 2020 by the World Health Organization (WHO). As of May 25th, 2021 there were 2.059.941 SARS-COV2 genome sequences that have been submitted to the GISAID database, with numerous variations. Here, we aim to analyze the SARS-CoV-2 genome data submitted to the GISAID database from Turkey and to determine the variant and clade distributions by the end of May 2021, in accordance with their appearance timeline. We compared these findings to USA, Europe, and Asia data as well. We have also evaluated the effects of spike protein variations, detected in a group of genome sequences of 13 patients who applied to our clinic, by using 3D modeling algorithms. For this purpose, we analyzed 4607 SARS-CoV-2 genome sequences submitted by different lab centers from Turkey to the GISAID database between March 2020 and May 2021. Described mutations were also introduced in silico to the spike protein structure to analyze their isolated impacts on the protein structure. The most abundant clade was GR followed by G, GH, and GRY and we did not detect any V clade. The most common variant was B.1, followed by B.1.1, and the UK variant, B.1.1.7. Our results clearly show a concordance between the variant distributions, the number of cases, and the timelines of different variant accumulations in Turkey. The 3D simulations indicate an increase in the surface hydrophilicity of the reference spike protein and the detected mutations. There was less surface hydrophilicity increase in the Asp614Gly mutation, which exhibits a more compact conformation around the ACE-2 receptor binding domain region, rendering the structure in a "down" conformation. Our genomic findings can help to model vaccination programs and protein modeling may lead to different approaches for COVID-19 treatment strategies.


Subject(s)
Genome, Viral , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Adult , Aged , Algorithms , COVID-19/pathology , COVID-19/virology , Female , Humans , Male , Middle Aged , Molecular Dynamics Simulation , Mutation , Phylogeny , Protein Domains/genetics , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Turkey , Young Adult
3.
PLoS Genet ; 17(11): e1009924, 2021 11.
Article in English | MEDLINE | ID: mdl-34788288

ABSTRACT

Higher fungi can rapidly produce large numbers of spores suitable for aerial dispersal. The efficiency of the dispersal and spore resilience to abiotic stresses correlate with their hydrophobicity provided by the unique amphiphilic and superior surface-active proteins-hydrophobins (HFBs)-that self-assemble at hydrophobic/hydrophilic interfaces and thus modulate surface properties. Using the HFB-enriched mold Trichoderma (Hypocreales, Ascomycota) and the HFB-free yeast Pichia pastoris (Saccharomycetales, Ascomycota), we revealed that the rapid release of HFBs by aerial hyphae shortly prior to conidiation is associated with their intracellular accumulation in vacuoles and/or lipid-enriched organelles. The occasional internalization of the latter organelles in vacuoles can provide the hydrophobic/hydrophilic interface for the assembly of HFB layers and thus result in the formation of HFB-enriched vesicles and vacuolar multicisternal structures (VMSs) putatively lined up by HFBs. These HFB-enriched vesicles and VMSs can become fused in large tonoplast-like organelles or move to the periplasm for secretion. The tonoplast-like structures can contribute to the maintenance of turgor pressure in aerial hyphae supporting the erection of sporogenic structures (e.g., conidiophores) and provide intracellular force to squeeze out HFB-enriched vesicles and VMSs from the periplasm through the cell wall. We also show that the secretion of HFBs occurs prior to the conidiation and reveal that the even spore coating of HFBs deposited in the extracellular matrix requires microscopic water droplets that can be either guttated by the hyphae or obtained from the environment. Furthermore, we demonstrate that at least one HFB, HFB4 in T. guizhouense, is produced and secreted by wetted spores. We show that this protein possibly controls spore dormancy and contributes to the water sensing mechanism required for the detection of germination conditions. Thus, intracellular HFBs have a range of pleiotropic functions in aerial hyphae and spores and are essential for fungal development and fitness.


Subject(s)
Cell Wall/genetics , Fungal Proteins/genetics , Spores, Fungal/genetics , Trichoderma/genetics , Ascomycota/genetics , Ascomycota/growth & development , Hydrophobic and Hydrophilic Interactions , Hyphae/genetics , Hyphae/growth & development , Hypocreales/genetics , Hypocreales/growth & development , Spores, Fungal/growth & development , Trichoderma/growth & development
4.
EBioMedicine ; 73: 103646, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34689087

ABSTRACT

BACKGROUND: Senescent cells accumulate in tissues over time as part of the natural ageing process and the removal of senescent cells has shown promise for alleviating many different age-related diseases in mice. Cancer is an age-associated disease and there are numerous mechanisms driving cellular senescence in cancer that can be detrimental to recovery. Thus, it would be beneficial to develop a senolytic that acts not only on ageing cells but also senescent cancer cells to prevent cancer recurrence or progression. METHODS: We used molecular modelling to develop a series of rationally designed peptides to mimic and target FOXO4 disrupting the FOXO4-TP53 interaction and releasing TP53 to induce apoptosis. We then tested these peptides as senolytic agents for the elimination of senescent cells both in cell culture and in vivo. FINDINGS: Here we show that these peptides can act as senolytics for eliminating senescent human cancer cells both in cell culture and in orthotopic mouse models. We then further characterized one peptide, ES2, showing that it disrupts FOXO4-TP53 foci, activates TP53 mediated apoptosis and preferentially binds FOXO4 compared to TP53. Next, we show that intratumoural delivery of ES2 plus a BRAF inhibitor results in a significant increase in apoptosis and a survival advantage in mouse models of melanoma. Finally, we show that repeated systemic delivery of ES2 to older mice results in reduced senescent cell numbers in the liver with minimal toxicity. INTERPRETATION: Taken together, our results reveal that peptides can be generated to specifically target and eliminate FOXO4+ senescent cancer cells, which has implications for eradicating residual disease and as a combination therapy for frontline treatment of cancer. FUNDING: This work was supported by the Cancer Early Detection Advanced Research Center at Oregon Health & Science University.


Subject(s)
Antineoplastic Agents/chemistry , Cell Cycle Proteins/chemistry , Drug Design , Forkhead Transcription Factors/chemistry , Models, Molecular , Peptides/chemistry , Senotherapeutics/chemistry , Tumor Suppressor Protein p53/chemistry , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle Proteins/metabolism , Cellular Senescence/drug effects , Disease Models, Animal , Female , Forkhead Transcription Factors/metabolism , Humans , Male , Melanoma , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptides/pharmacology , Protein Conformation , Senotherapeutics/pharmacology , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
5.
Environ Microbiol ; 23(10): 5750-5768, 2021 10.
Article in English | MEDLINE | ID: mdl-33538393

ABSTRACT

The secretomes of filamentous fungi contain a diversity of small secreted cysteine-rich proteins (SSCPs) that have a variety of properties ranging from toxicity to surface activity. Some SSCPs are recognized by other organisms as indicators of fungal presence, but their function in fungi is not fully understood. We detected a new family of fungal surface-active SSCPs (saSSCPs), here named hyphosphere proteins (HFSs). An evolutionary analysis of the HFSs in Pezizomycotina revealed a unique pattern of eight single cysteine residues (C-CXXXC-C-C-C-C-C) and a long evolutionary history of multiple gene duplications and ancient interfungal lateral gene transfers, suggesting their functional significance for fungi with different lifestyles. Interestingly, recombinantly produced saSSCPs from three families (HFSs, hydrophobins and cerato-platanins) showed convergent surface-modulating activity on glass and on poly(ethylene-terephthalate), transforming their surfaces to a moderately hydrophilic state, which significantly favoured subsequent hyphal attachment. The addition of purified saSSCPs to the tomato rhizosphere had mixed effects on hyphal attachment to roots, while all tested saSSCPs had an adverse effect on plant growth in vitro. We propose that the exceptionally high diversity of saSSCPs in Trichoderma and other fungi evolved to efficiently condition various surfaces in the hyphosphere to a fungal-beneficial state.


Subject(s)
Fungal Proteins , Trichoderma , Cysteine/metabolism , Fungal Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Surface Properties , Trichoderma/metabolism
6.
Environ Microbiol ; 18(2): 580-97, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26118314

ABSTRACT

Trichoderma guizhouense NJAU 4742 (Harzianum clade) can suppress the causative agent of banana wild disease Fusarium oxysporum f. sp. cubense 4 (Foc4). To identify genes involved in this trait, we used T-DNA insertional mutagenesis and isolated one mutant that was unable to overgrow Foc4 and had reduced antifungal ability. Using the high-efficiency thermal asymmetric interlaced-PCR, the T-DNA was located in the terminator of a neutral metalloprotease gene (encoding a MEROPS family M35 protease), which was named nmp1. The antifungal activity of the mutant was recovered by retransformation with wild-type nmp1 gene. The purified NMP1 (overexpressed in Pichia pastoris) did not inhibit the growth and germination of other fungi in vitro. Its addition, however, partly recovered the antifungal activity of the mutant strain against some fungi. The expression of nmp1 is induced by the presence of fungi and by dead fungal biomass, but the time-course of transcript accumulation following the physical contact depends on mode of interaction: it increases in cases of long-lasting parasitism and decreases if the prey fungus is dead shortly after or even before the contact (predation). We thus conclude that NMP1 protein of T. guizhouense has major importance for mycotrophic interactions and defence against other fungi.


Subject(s)
Antifungal Agents/metabolism , Fusarium/pathogenicity , Metalloproteases/genetics , Metalloproteases/metabolism , Trichoderma/genetics , Trichoderma/metabolism , DNA, Bacterial/genetics , Musa/microbiology , Mutagenesis, Insertional , Pichia/genetics , Plant Diseases/microbiology , Polymerase Chain Reaction , Transformation, Genetic
7.
Protein Eng Des Sel ; 28(5): 127-35, 2015 May.
Article in English | MEDLINE | ID: mdl-25784767

ABSTRACT

In the last decades, effective cellulose degradation became a major point of interest due to the properties of cellulose as a renewable energy source and the widespread application of cellulases (the cellulose degrading enzymes) in many industrial processes. Effective bioconversion of lignocellulosic biomass into soluble sugars for ethanol production requires use of thermostable and highly active cellulases. The library of current cellulases includes enzymes that can work at acidic and neutral pH in a wide temperature range. However, only few cellulases are reported to be thermostable. In order to alleviate this, we have performed a hybrid approach for the thermostabilization of a key cellulase, Endoglucanase I (EGI) from Trichoderma reesei. We combined in silico and in vitro experiments to modulate the thermostability of EGI. Four different predictive algorithms were used to set up a library of mutations. Three thermostabilizer mutations (Q126F, K272F, Q274V) were selected and molecular dynamics simulations at room temperature and high temperatures were performed to analyze the effect of the mutations on enzyme structure and stability. The mutations were then introduced into the endoglucanase 1 gene, using site-directed mutagenesis, and the effect of the mutations on enzyme structure and stability were determined. MD simulations supported the fact that Q126F, K272F and Q274V mutations have a thermostabilizing effect on the protein structure. Experimental studies validated that all of the mutants exhibited higher thermostability compared with native EGI albeit with a decrease in specific activity.


Subject(s)
Cellulases/chemistry , Fungal Proteins/chemistry , Trichoderma/enzymology , Amino Acid Substitution , Catalytic Domain , Cellulases/genetics , Computational Biology , Enzyme Stability , Fungal Proteins/genetics , Hydrogen-Ion Concentration , Molecular Dynamics Simulation
8.
J Biotechnol ; 159(1-2): 61-8, 2012 May 31.
Article in English | MEDLINE | ID: mdl-22426095

ABSTRACT

In this study, a major cellulase, namely endoglucanase 1 (EGI) from Trichoderma reesei was mutated by the introduction of four different lysine and glycine rich loops to create a hotspot for directed crosslinking of EGI away from the active site. The impact of the inserted loops on the stability of the enzyme was analyzed using molecular dynamics (MD) and the effect on the active site was studied using molecular mechanics (MM) simulations. The best loop mutation predicted in silico (EGI_L5) was introduced to EGI via site directed mutagenesis. The loop mutant EGI_L5 and EGI were both expressed in Pichia pastoris. Enzymes were characterized and their activities against soluble substrates such as CMC and 4-MUC were determined. Both enzymes exhibited similar pH and temperature activity and thermal stability profiles. Moreover, specific activity of EGI_L5 against 4-MUC was found to be the same as the native enzyme.


Subject(s)
Cellulase/metabolism , Fungal Proteins/metabolism , Pichia/genetics , Recombinant Proteins/metabolism , Trichoderma/enzymology , Bioreactors , Carboxymethylcellulose Sodium , Cellulase/chemistry , Cellulase/genetics , Computer Simulation , Enzyme Stability , Fungal Proteins/chemistry , Fungal Proteins/genetics , Hydrogen-Ion Concentration , Hydrolysis , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Mutation , Pichia/metabolism , Protein Engineering , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Temperature , Trichoderma/genetics , Trichoderma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...