Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Mol Cancer Ther ; 20(12): 2420-2432, 2021 12.
Article in English | MEDLINE | ID: mdl-34607932

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer, with a high predisposition for locally invasive and metastatic cancer. With the objective to reduce cancer metastasis, we developed small molecule inhibitors to target the drivers of metastasis, the Rho GTPases Rac and Cdc42. Of these, MBQ-167 inhibits both Rac and Cdc42 with IC50s of 103 and 78 nmol/L, respectively; and consequently, inhibits p21-activated kinase (PAK) signaling, metastatic cancer cell proliferation, migration, and mammosphere growth; induces cell-cycle arrest and apoptosis; and decreases HER2-type mammary fatpad tumor growth and metastasis (Humphries-Bickley and colleagues, 2017). Herein, we used nuclear magnetic resonance to show that MBQ-167 directly interacts with Rac1 to displace specific amino acids, and consequently inhibits Rac.GTP loading and viability in TNBC cell lines. Phosphokinome arrays in the MDA-MB-231 human TNBC cells show that phosphorylation status of kinases independent of the Rac/Cdc42/PAK pathway are not significantly changed following 200 nmol/L MBQ-167 treatment. Western blotting shows that initial increases in phospho-c-Jun and phospho-CREB in response to MBQ-167 are not sustained with prolonged exposure, as also confirmed by a decrease in their transcriptional targets. MBQ-167 inhibits tumor growth, and spontaneous and experimental metastasis in immunocompromised (human TNBC) and immunocompetent (mouse TNBC) models. Moreover, per oral administration of MBQ-167 at 100 mg/kg body weight is not toxic to immunocompetent BALB/c mice and has a half-life of 4.6 hours in plasma. These results highlight the specificity, potency, and bioavailability of MBQ-167, and support its clinical potential as a TNBC therapeutic.


Subject(s)
Triple Negative Breast Neoplasms/genetics , cdc42 GTP-Binding Protein/antagonists & inhibitors , rac1 GTP-Binding Protein/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Female , Humans , Mice , Mice, SCID , Triple Negative Breast Neoplasms/pathology
2.
Front Mol Biosci ; 7: 9, 2020.
Article in English | MEDLINE | ID: mdl-32047754

ABSTRACT

Protein-protein interactions and the complexes thus formed are critical elements in a wide variety of cellular events that require an atomic-level description to understand them in detail. Such complexes typically constitute challenging systems to characterize and drive the development of innovative biophysical methods. NMR spectroscopy techniques can be applied to extract atomic resolution information on the binding interfaces, intermolecular affinity, and binding-induced conformational changes in protein-protein complexes formed in solution, in the cell membrane, and in large macromolecular assemblies. Here we discuss experimental techniques for the characterization of protein-protein complexes in both solution NMR and solid-state NMR spectroscopy. The approaches include solvent paramagnetic relaxation enhancement and chemical shift perturbations (CSPs) for the identification of binding interfaces, and the application of intermolecular nuclear Overhauser effect spectroscopy and residual dipolar couplings to obtain structural constraints of protein-protein complexes in solution. Complementary methods in solid-state NMR are described, with emphasis on the versatility provided by heteronuclear dipolar recoupling to extract intermolecular constraints in differentially labeled protein complexes. The methods described are of particular relevance to the analysis of membrane proteins, such as those involved in signal transduction pathways, since they can potentially be characterized by both solution and solid-state NMR techniques, and thus outline key developments in this frontier of structural biology.

3.
ACS Omega ; 3(2): 1437-1444, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29503970

ABSTRACT

In this work, we explore the use of electrochemical methods (i.e., impedance) along with the arsenic-specific aptamer (ArsSApt) to fabricate and study the interfacial properties of an arsenic (As(III)) sensor. The ArsSApt layer was self-assembled on a gold substrate, and upon binding of As(III), a detectable change in the impedimetric signal was recorded because of conformational changes at the interfacial layer. These interfacial changes are linearly correlated with the concentration of arsenic present in the system. This target-induced signal was utilized for the selective detection of As(III) with a linear dynamic range of 0.05-10 ppm and minimum detectable concentrations of ca. 0.8 µM. The proposed system proved to be successful mainly because of the combination of a highly sensitive electrochemical platform and the recognized specificity of the ArsSApt toward its target molecule. Also, the interaction between the ArsSApt and the target molecule (i.e., arsenic) was explored in depth. The obtained results in this work are aimed at proving the development of a simple and environmentally benign sensor for the detection of As(III) as well as in elucidating the possible interactions between the ArsSApt and arsenic molecules.

4.
J Am Chem Soc ; 138(37): 12029-32, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27593947

ABSTRACT

Maturation of HIV-1 requires disassembly of the Gag polyprotein lattice, which lines the viral membrane in the immature state, and subsequent assembly of the mature capsid protein lattice, which encloses viral RNA in the mature state. Metastability of the immature lattice has been proposed to depend on the existence of a structurally ordered, α-helical segment spanning the junction between capsid (CA) and spacer peptide 1 (SP1) subunits of Gag, a segment that is dynamically disordered in the mature capsid lattice. We report solid state nuclear magnetic resonance (ssNMR) measurements on the immature lattice in noncrystalline, spherical virus-like particles (VLPs) derived from Gag. The ssNMR data provide definitive evidence for this critical α-helical segment in the VLPs. Differences in ssNMR chemical shifts and signal intensities between immature and mature lattice assemblies also support a major rearrangement of intermolecular interactions in the maturation process, consistent with recent models from electron cryomicroscopy and X-ray crystallography.


Subject(s)
Capsid Proteins/chemistry , HIV-1/physiology , Magnetic Resonance Spectroscopy/methods , Virus Assembly/physiology , Models, Molecular , Protein Conformation
5.
J Am Chem Soc ; 138(27): 8538-46, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27298207

ABSTRACT

The HIV-1 capsid protein (CA) forms the capsid shell that encloses RNA within a mature HIV-1 virion. Previous studies by electron microscopy have shown that the capsid shell is primarily a triangular lattice of CA hexamers, with variable curvature that destroys the ideal symmetry of a planar lattice. The mature CA lattice depends on CA dimerization, which occurs through interactions between helix 9 segments of the C-terminal domain (CTD) of CA. Several high-resolution structures of the CTD-CTD dimerization interface have been reported, based on X-ray crystallography and multidimensional solution nuclear magnetic resonance (NMR), with significant differences in amino acid side chain conformations and helix 9-helix 9 orientations. In a structural model for tubular CA assemblies based on cryogenic electron microscopy (cryoEM) [Zhao et al. Nature, 2013, 497, 643-646], the dimerization interface is substantially disordered. The dimerization interface structure in noncrystalline CA assemblies and the extent to which this interface is structurally ordered within a curved lattice have therefore been unclear. Here we describe solid state NMR measurements on the dimerization interface in tubular CA assemblies, which contain the curved triangular lattice of a mature virion, including quantitative measurements of intermolecular and intramolecular distances using dipolar recoupling techniques, solid state NMR chemical shifts, and long-range side chain-side chain contacts. When combined with restraints on the distance and orientation between helix 9 segments from the cryoEM study, the solid state NMR data lead to a unique high-resolution structure for the dimerization interface in the noncrystalline lattice of CA tubes. These results demonstrate that CA lattice curvature is not dependent on disorder or variability in the dimerization interface. This work also demonstrates the feasibility of local structure determination within large noncrystalline assemblies formed by high-molecular-weight proteins, using modern solid state NMR methods.


Subject(s)
Capsid Proteins/chemistry , HIV-1 , Protein Multimerization , Magnetic Resonance Spectroscopy , Protein Structure, Quaternary
6.
J Biol Chem ; 291(25): 13098-112, 2016 Jun 17.
Article in English | MEDLINE | ID: mdl-27129282

ABSTRACT

We present the results of solid state nuclear magnetic resonance (NMR) experiments on HIV-1 capsid protein (CA) assemblies with three different morphologies, namely wild-type CA (WT-CA) tubes with 35-60 nm diameters, planar sheets formed by the Arg(18)-Leu mutant (R18L-CA), and R18L-CA spheres with 20-100 nm diameters. The experiments are intended to elucidate molecular structural variations that underlie these variations in CA assembly morphology. We find that multidimensional solid state NMR spectra of (15)N,(13)C-labeled CA assemblies are remarkably similar for the three morphologies, with only small differences in (15)N and (13)C chemical shifts, no significant differences in NMR line widths, and few differences in the number of detectable NMR cross-peaks. Thus, the pronounced differences in morphology do not involve major differences in the conformations and identities of structurally ordered protein segments. Instead, morphological variations are attributable to variations in conformational distributions within disordered segments, which do not contribute to the solid state NMR spectra. Variations in solid state NMR signals from certain amino acid side chains are also observed, suggesting differences in the intermolecular dimerization interface between curved and planar CA lattices, as well as possible differences in intramolecular helix-helix packing.


Subject(s)
Capsid/chemistry , HIV-1/chemistry , Capsid Proteins , Models, Molecular , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular
7.
J Mol Biol ; 426(5): 1109-27, 2014 Mar 06.
Article in English | MEDLINE | ID: mdl-24370930

ABSTRACT

The 231-residue capsid (CA) protein of human immunodeficiency virus type 1 (HIV-1) spontaneously self-assembles into tubes with a hexagonal lattice that is believed to mimic the surface lattice of conical capsid cores within intact virions. We report the results of solid-state nuclear magnetic resonance (NMR) measurements on HIV-1 CA tubes that provide new information regarding changes in molecular structure that accompany CA self-assembly, local dynamics within CA tubes, and possible mechanisms for the generation of lattice curvature. This information is contained in site-specific assignments of signals in two- and three-dimensional solid-state NMR spectra, conformation-dependent (15)N and (13)C NMR chemical shifts, detection of highly dynamic residues under solution NMR conditions, measurements of local variations in transverse spin relaxation rates of amide (1)H nuclei, and quantitative measurements of site-specific (15)N-(15)N dipole-dipole couplings. Our data show that most of the CA sequence is conformationally ordered and relatively rigid in tubular assemblies and that structures of the N-terminal domain (NTD) and the C-terminal domain (CTD) observed in solution are largely retained. However, specific segments, including the N-terminal ß-hairpin, the cyclophilin A binding loop, the inter-domain linker, segments involved in intermolecular NTD-CTD interactions, and the C-terminal tail, have substantial static or dynamical disorder in tubular assemblies. Other segments, including the 310-helical segment in CTD, undergo clear conformational changes. Structural variations associated with curvature of the CA lattice appear to be localized in the inter-domain linker and intermolecular NTD-CTD interface, while structural variations within NTD hexamers, around local 3-fold symmetry axes, and in CTD-CTD dimerization interfaces are less significant.


Subject(s)
Capsid Proteins/chemistry , Capsid/chemistry , HIV-1/physiology , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , HIV Infections/genetics , HIV Infections/metabolism , HIV Infections/virology , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Mutation/genetics , Protein Conformation
8.
J Am Chem Soc ; 135(51): 19237-47, 2013 Dec 26.
Article in English | MEDLINE | ID: mdl-24304221

ABSTRACT

Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary stability of the amyloid architecture. Despite these advances, however, obtaining atomic resolution information describing the higher levels of structural organization within the fibrils remains a significant challenge. Here, we detail MAS NMR experiments and sample labeling schemes designed specifically to probe such higher order amyloid structure, and we have applied them to the fibrils formed by an eleven-residue segment of the amyloidogenic protein transthyretin (TTR(105-115)). These experiments have allowed us to define unambiguously not only the arrangement of the peptide ß-strands into ß-sheets but also the ß-sheet interfaces within each protofilament, and in addition to identify the nature of the protofilament-to-protofilament contacts that lead to the formation of the complete fibril. Our efforts have resulted in 111 quantitative distance and torsion angle restraints (10 per residue) that describe the various levels of structure organization. The experiments benefited extensively from the use of dynamic nuclear polarization (DNP), which in some cases allowed us to shorten the data acquisition time from days to hours and to improve significantly the signal-to-noise ratios of the spectra. The ß-sheet interface and protofilament interactions identified here revealed local variations in the structure that result in multiple peaks for the exposed N- and C-termini of the peptide and in inhomogeneous line-broadening for the residues buried within the interior of the fibrils.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid/chemistry , Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular
9.
Proc Natl Acad Sci U S A ; 110(14): 5468-73, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23513222

ABSTRACT

The cross-ß amyloid form of peptides and proteins represents an archetypal and widely accessible structure consisting of ordered arrays of ß-sheet filaments. These complex aggregates have remarkable chemical and physical properties, and the conversion of normally soluble functional forms of proteins into amyloid structures is linked to many debilitating human diseases, including several common forms of age-related dementia. Despite their importance, however, cross-ß amyloid fibrils have proved to be recalcitrant to detailed structural analysis. By combining structural constraints from a series of experimental techniques spanning five orders of magnitude in length scale--including magic angle spinning nuclear magnetic resonance spectroscopy, X-ray fiber diffraction, cryoelectron microscopy, scanning transmission electron microscopy, and atomic force microscopy--we report the atomic-resolution (0.5 Å) structures of three amyloid polymorphs formed by an 11-residue peptide. These structures reveal the details of the packing interactions by which the constituent ß-strands are assembled hierarchically into protofilaments, filaments, and mature fibrils.


Subject(s)
Amyloid/chemistry , Amyloid/ultrastructure , Models, Molecular , Protein Structure, Secondary , Cryoelectron Microscopy , Magnetic Resonance Spectroscopy/methods , Microscopy, Electron, Scanning Transmission , X-Ray Diffraction
10.
J Biol Chem ; 287(5): 3479-84, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22147705

ABSTRACT

Functional amyloids have been identified in a wide range of organisms, taking on a variety of biological roles and being controlled by remarkable mechanisms of directed assembly. Here, we report that amyloid fibrils constitute the ribs of the buoyancy organelles of Anabaena flos-aquae. The walls of these gas-filled vesicles are known to comprise a single protein, GvpA, arranged in a low pitch helix. However, the tertiary and quaternary structures have been elusive. Using solid-state NMR correlation spectroscopy we find detailed evidence for an extended cross-ß structure. This amyloid assembly helps to account for the strength and amphiphilic properties of the vesicle wall. Buoyancy organelles thus dramatically extend the scope of known functional amyloids.


Subject(s)
Amyloid/chemistry , Dolichospermum flos-aquae/chemistry , Organelles/chemistry , Proteins/chemistry , Amyloid/metabolism , Dolichospermum flos-aquae/metabolism , Nuclear Magnetic Resonance, Biomolecular , Organelles/metabolism , Protein Structure, Secondary , Proteins/metabolism
11.
J Am Chem Soc ; 133(35): 13967-74, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21774549

ABSTRACT

We describe magic-angle spinning NMR experiments designed to elucidate the interstrand architecture of amyloid fibrils. Three methods are introduced for this purpose, two being based on the analysis of long-range (13)C-(13)C correlation spectra and the third based on the identification of intermolecular interactions in (13)C-(15)N spectra. We show, in studies of fibrils formed by the 86-residue SH3 domain of PI3 kinase (PI3-SH3 or PI3K-SH3), that efficient (13)C-(13)C correlation spectra display a resonance degeneracy that establishes a parallel, in-register alignment of the proteins in the amyloid fibrils. In addition, this degeneracy can be circumvented to yield direct intermolecular constraints. The (13)C-(13)C experiments are corroborated by (15)N-(13)C correlation spectra obtained from a mixed [(15)N,(12)C]/[(14)N,(13)C] sample which directly quantify interstrand distances. Furthermore, when the spectra are recorded with signal enhancement provided by dynamic nuclear polarization (DNP) at 100 K, we demonstrate a dramatic increase (from 23 to 52) in the number of intermolecular (15)N-(13)C constraints detectable in the spectra. The increase in the information content is due to the enhanced signal intensities and to the fact that dynamic processes, leading to spectral intensity losses, are quenched at low temperatures. Thus, acquisition of low temperature spectra addresses a problem that is frequently encountered in MAS spectra of proteins. In total, the experiments provide 111 intermolecular (13)C-(13)C and (15)N-(13)C constraints that establish that the PI3-SH3 protein strands are aligned in a parallel, in-register arrangement within the amyloid fibril.


Subject(s)
Amyloid/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Phosphatidylinositol 3-Kinases/chemistry , src Homology Domains , Amino Acid Sequence , Bacterial Proteins/chemistry , Models, Molecular , Molecular Sequence Data , Protein Structure, Secondary , Staphylococcus aureus/chemistry
12.
J Am Chem Soc ; 132(48): 17077-9, 2010 Dec 08.
Article in English | MEDLINE | ID: mdl-21077676

ABSTRACT

The deposition of amyloid-like fibrils, composed primarily of the 99-residue protein ß2-microglobulin (ß2m), is one of the characteristic symptoms of dialysis-related amyloidosis. Fibrils formed in vitro at low pH and low salt concentration share many properties with the disease related fibrils and have been extensively studied by a number of biochemical and biophysical methods. These fibrils contain a significant ß-sheet core and have a complex cryoEM electron density profile. Here, we investigate the intrasheet arrangement of the fibrils by means of (15)N-(13)C MAS NMR correlation spectroscopy. We utilize a fibril sample grown from a 50:50 mixture of (15)N,(12)C- and (14)N,(13)C-labeled ß2m monomers, the latter prepared using 2-(13)C glycerol as the carbon source. Together with the use of ZF-TEDOR mixing, this sample allowed us to observe intermolecular (15)N-(13)C backbone-to-backbone contacts with excellent resolution and good sensitivity. The results are consistent with a parallel, in-register arrangement of the protein subunits in the fibrils and suggest that a significant structural reorganization occurs from the native to the fibril state.


Subject(s)
Amyloid/chemistry , Protein Multimerization , beta 2-Microglobulin/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Protein Structure, Tertiary
13.
Biophys J ; 99(6): 1932-9, 2010 Sep 22.
Article in English | MEDLINE | ID: mdl-20858439

ABSTRACT

Gas vesicles are gas-filled buoyancy organelles with walls that consist almost exclusively of gas vesicle protein A (GvpA). Intact, collapsed gas vesicles from the cyanobacterium Anabaena flos-aquae were studied by solid-state NMR spectroscopy, and most of the GvpA sequence was assigned. Chemical shift analysis indicates a coil-α-ß-ß-α-coil peptide backbone, consistent with secondary-structure-prediction algorithms, and complementary information about mobility and solvent exposure yields a picture of the overall topology of the vesicle subunit that is consistent with its role in stabilizing an air-water interface.


Subject(s)
Gases , Magnetic Resonance Spectroscopy/methods , Organelles/chemistry , Anabaena , Hydrophobic and Hydrophilic Interactions , Movement , Protein Structure, Secondary , Proteins/chemistry , Proteins/metabolism , Solvents/chemistry
14.
Biochemistry ; 49(35): 7474-84, 2010 Sep 07.
Article in English | MEDLINE | ID: mdl-20707313

ABSTRACT

The SH3 domain of the PI3 kinase (PI3-SH3 or PI3K-SH3) readily aggregates into fibrils in vitro and has served as an important model system in the investigation of the molecular properties and mechanism of formation of amyloid fibrils. We describe the molecular conformation of PI3-SH3 in amyloid fibril form as revealed by magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy. The MAS NMR spectra of these fibrils display excellent resolution, with narrow (13)C and (15)N line widths, representing a high degree of structural order and the absence of extensive molecular motion for the majority of the polypeptide chain. We have identified the spin systems of 82 of the 86 residues in the protein and obtained sequential resonance assignments for 75 of them. Chemical shift analysis indicates that the protein subunits making up the fibril adopt a compact conformation consisting of four well-defined beta-sheet regions and four random-coil elements with varying degrees of local dynamics or disorder. The backbone conformation of PI3-SH3 in fibril form differs significantly from that of the native state of the protein, both in secondary structure and in the location of dynamic or disordered segments. The site-specific MAS NMR analysis of PI3-SH3 fibrils we report here is compared with previously published mechanistic and structural data, resulting in a detailed interpretation of the factors that mediate fibril formation by PI3-SH3 and allowing us to propose a possible model of the core structure of the fibrils. Our results confirm the structural similarities between PI3-SH3 fibrils and amyloid assemblies directly related to degenerative and infectious diseases.


Subject(s)
Amyloid/chemistry , Phosphatidylinositol 3-Kinases/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Folding , src Homology Domains
15.
J Am Chem Soc ; 132(30): 10414-23, 2010 Aug 04.
Article in English | MEDLINE | ID: mdl-20662519

ABSTRACT

Beta(2)-microglobulin (beta(2)m) is the major structural component of amyloid fibrils deposited in a condition known as dialysis-related amyloidosis. Despite numerous studies that have elucidated important aspects of the fibril formation process in vitro, and a magic angle spinning (MAS) NMR study of the fibrils formed by a small peptide fragment, structural details of beta(2)m fibrils formed by the full-length 99-residue protein are largely unknown. Here, we present a site-specific MAS NMR analysis of fibrils formed by the full-length beta(2)m protein and compare spectra of fibrils prepared under two different conditions. Specifically, long straight (LS) fibrils are formed at pH 2.5, while a very different morphology denoted as worm-like (WL) fibrils is observed in preparations at pH 3.6. High-resolution MAS NMR spectra have allowed us to obtain (13)C and (15)N resonance assignments for 64 residues of beta(2)m in LS fibrils, including part of the highly mobile N-terminus. Approximately 25 residues did not yield observable signals. Chemical shift analysis of the sequentially assigned residues indicates that these fibrils contain an extensive beta-sheet core organized in a non-native manner, with a trans-P32 conformation. In contrast, WL fibrils exhibit more extensive dynamics and appear to have a smaller beta-sheet core than LS fibrils, although both cores seem to share some common elements. Our results suggest that the distinct macroscopic morphological features observed for the two types of fibrils result from variations in structure and dynamics at the molecular level.


Subject(s)
Amyloid/metabolism , Amyloidosis/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , beta 2-Microglobulin/metabolism , Amino Acid Sequence , Amyloid/chemistry , Humans , Molecular Sequence Data , Protein Structure, Secondary , beta 2-Microglobulin/chemistry
16.
Phys Chem Chem Phys ; 12(22): 5911-9, 2010 Jun 14.
Article in English | MEDLINE | ID: mdl-20454733

ABSTRACT

Dynamic nuclear polarization (DNP) utilizes the inherently larger polarization of electrons to enhance the sensitivity of conventional solid-state NMR experiments at low temperature. Recent advances in instrumentation development and sample preparation have transformed this field and have opened up new opportunities for its application to biological systems. Here, we present DNP-enhanced (13)C-(13)C and (15)N-(13)C correlation experiments on GNNQQNY nanocrystals and amyloid fibrils acquired at 9.4 T and 100 K and demonstrate that DNP can be used to obtain assignments and site-specific structural information very efficiently. We investigate the influence of temperature on the resolution, molecular conformation, structural integrity and dynamics in these two systems. In addition, we assess the low-temperature performance of two commonly used solid-state NMR experiments, proton-driven spin diffusion (PDSD) and transferred echo double resonance (TEDOR), and discuss their potential as tools for measurement of structurally relevant distances at low temperature in combination with DNP.


Subject(s)
Amyloid/chemistry , Magnetic Resonance Spectroscopy/methods , Nanoparticles/chemistry , Amino Acid Sequence , Protein Structure, Secondary , Temperature
18.
J Chem Phys ; 130(11): 114506, 2009 Mar 21.
Article in English | MEDLINE | ID: mdl-19317544

ABSTRACT

Quantitative solid-state NMR distance measurements in strongly coupled spin systems are often complicated due to the simultaneous presence of multiple noncommuting spin interactions. In the case of zeroth-order homonuclear dipolar recoupling experiments, the recoupled dipolar interaction between distant spins is attenuated by the presence of stronger couplings to nearby spins, an effect known as dipolar truncation. In this article, we quantitatively investigate the effect of dipolar truncation on the polarization-transfer efficiency of various homonuclear recoupling experiments with analytical theory, numerical simulations, and experiments. In particular, using selectively (13)C-labeled tripeptides, we compare the extent of dipolar truncation in model three-spin systems encountered in protein samples produced with uniform and alternating labeling. Our observations indicate that while the extent of dipolar truncation decreases in the absence of directly bonded nuclei, two-bond dipolar couplings can generate significant dipolar truncation of small, long-range couplings. Therefore, while alternating labeling alleviates the effects of dipolar truncation, and thus facilitates the application of recoupling experiments to large spin systems, it does not represent a complete solution to this outstanding problem.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Peptides/chemistry , Carbon Isotopes , Computer Simulation , Isotope Labeling , Models, Molecular , Proteins/chemistry
19.
J Mol Biol ; 387(4): 1032-9, 2009 Apr 10.
Article in English | MEDLINE | ID: mdl-19232353

ABSTRACT

Gas vesicles are organelles that provide buoyancy to the aquatic microorganisms that harbor them. The gas vesicle shell consists almost exclusively of the hydrophobic 70-residue gas vesicle protein A, arranged in an ordered array. Solid-state NMR spectra of intact collapsed gas vesicles from the cyanobacterium Anabaena flos-aquae show duplication of certain gas vesicle protein A resonances, indicating that specific sites experience at least two different local environments. Interpretation of these results in terms of an asymmetric dimer repeat unit can reconcile otherwise conflicting features of the primary, secondary, tertiary, and quaternary structures of the gas vesicle protein. In particular, the asymmetric dimer can explain how the hydrogen bonds in the beta-sheet portion of the molecule can be oriented optimally for strength while promoting stabilizing aromatic and electrostatic side-chain interactions among highly conserved residues and creating a large hydrophobic surface suitable for preventing water condensation inside the vesicle.


Subject(s)
Bacterial Proteins/chemistry , Proteins/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Dimerization , Dolichospermum flos-aquae/chemistry , Dolichospermum flos-aquae/genetics , Dolichospermum flos-aquae/ultrastructure , Gases , Hydrogen Bonding , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Organelles/chemistry , Organelles/ultrastructure , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Subunits , Proteins/genetics , Sequence Homology, Amino Acid , Static Electricity
20.
J Chem Phys ; 128(5): 052321, 2008 Feb 07.
Article in English | MEDLINE | ID: mdl-18266438

ABSTRACT

We describe solid-state NMR homonuclear recoupling experiments at high magic-angle spinning (MAS) frequencies using the radio frequency-driven recoupling (RFDR) scheme. The effect of heteronuclear decoupling interference during RFDR recoupling at high spinning frequencies is investigated experimentally and via numerical simulations, resulting in the identification of optimal decoupling conditions. The effects of MAS frequency, RF field amplitude, bandwidth, and chemical shift offsets are examined. Most significantly, it is shown that broadband homonuclear correlation spectra can be efficiently obtained using RFDR without decoupling during the mixing period in fully protonated samples, thus considerably reducing the rf power requirements for acquisition of (13)C-(13)C correlation spectra. The utility of RFDR sans decoupling is demonstrated with broadband correlation spectra of a peptide and a model protein at high MAS frequencies and high magnetic field.


Subject(s)
Computer Simulation , Models, Theoretical , Proteins/chemistry , Carbon Isotopes , Nuclear Magnetic Resonance, Biomolecular
SELECTION OF CITATIONS
SEARCH DETAIL
...