Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Biol Chem ; : 107451, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844131

ABSTRACT

Complement receptor 1 (CR1) is a membrane glycoprotein with a highly duplicated domain structure able to bind multiple ligands such as C3b and C4b, the activated fragments of complement components C3 and C4, respectively. We have previously used our knowledge of this domain structure to identify CSL040, a soluble extracellular fragment of CR1 containing the long homologous repeat (LHR) domains A, B, and C. CSL040 retains the ability to bind both C3b and C4b but is also a more potent complement inhibitor than other recombinant CR1-based therapeutics. To generate soluble CR1 variants with increased inhibitory potential across all three complement pathways, or variants with activity skewed to specific pathways, we exploited the domain structure of CR1 further by generating LHR domain duplications. We identified LHR-ABCC, a soluble CR1 variant containing a duplicated C3b binding C-terminal LHR-C domain that exhibited significantly enhanced alternative pathway inhibitory activity in vitro compared to CSL040. Another variant, LHR-BBCC, containing duplications of both LHR-B and LHR-C with four C3b binding sites, was shown to have reduced classical/lectin pathway inhibitory activity compared to CSL040, but comparable alternative pathway activity. Interestingly, multiplication of the C4b-binding LHR-A domain resulted in only minor increases in classical/lectin pathway inhibitory activity. The CR1 duplication variants characterized in these in vitro potency assays, as well as in affinity in solution C3b and C4b binding assays, not only provides an opportunity to identify new therapeutic molecules, but also additional mechanistic insights to the multiple interactions between CR1 and C3b/C4b.

2.
Ann Rheum Dis ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777379

ABSTRACT

OBJECTIVE: Tissue-resident memory cells (Trm) are a subset of T cells residing persistently and long-term within specific tissues that contribute to persistent inflammation and tissue damage. We characterised the phenotype and function of Trm and the role of CD103 in primary Sjogren's syndrome (pSS). METHODS: In both pSS and non-pSS sicca syndrome patients, we examined Trm frequency, cytokine production in salivary glands (SG) and peripheral blood (PB). We also analysed Trm-related gene expression in SG biopsies through bulk and single-cell RNA sequencing (scRNAseq). Additionally, we investigated Trm properties in an immunisation-induced animal model of pSS (experimental SS, ESS) mouse model and assessed the effects of Trm inhibition via intraglandular anti-CD103 monoclonal antibody administration. RESULTS: Transcriptomic pSS SG showed an upregulation of genes associated with tissue recruitment and long-term survival of Trm cells, confirmed by a higher frequency of CD8+CD103+CD69+ cells in pSS SG, compared with non-specific sialadenitis (nSS). In SG, CD8+ CD103+ Trm contributed to the secretion of granzyme-B and interferon-γ, CD8+ Trm cells were localised within inflammatory infiltrates, where PD1+CD8+ T cells were also increased compared with nSS and MALT lymphoma. scRNAseq of PB and pSS SG T cells confirmed expression of CD69, ITGAE, GZMB, GZMK and HLA-DRB1 among CD3+CD8+ SG T cells. In the SG of ESS, CD8+CD69+CD103+ Trm producing Granzyme B progressively expanded. However, intraglandular blockade of CD103 in ESS reduced Trm, reduced glandular damage and improved salivary flow. CONCLUSIONS: CD103+CD8+Trm cells are expanded in the SG of pSS and ESS, participate in tissue inflammation and can be therapeutically targeted.

3.
Biochem J ; 479(9): 1007-1030, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35470373

ABSTRACT

Human Complement Receptor 1 (HuCR1) is a potent membrane-bound regulator of complement both in vitro and in vivo, acting via interaction with its ligands C3b and C4b. Soluble versions of HuCR1 have been described such as TP10, the recombinant full-length extracellular domain, and more recently CSL040, a truncated version lacking the C-terminal long homologous repeat domain D (LHR-D). However, the role of N-linked glycosylation in determining its pharmacokinetic (PK) and pharmacodynamic (PD) properties is only partly understood. We demonstrated a relationship between the asialo-N-glycan levels of CSL040 and its PK/PD properties in rats and non-human primates (NHPs), using recombinant CSL040 preparations with varying asialo-N-glycan levels. The clearance mechanism likely involves the asialoglycoprotein receptor (ASGR), as clearance of CSL040 with a high proportion of asialo-N-glycans was attenuated in vivo by co-administration of rats with asialofetuin, which saturates the ASGR. Biodistribution studies also showed CSL040 localization to the liver following systemic administration. Our studies uncovered differential PD effects by CSL040 on complement pathways, with extended inhibition in both rats and NHPs of the alternative pathway compared with the classical and lectin pathways that were not correlated with its PK profile. Further studies showed that this effect was dose dependent and observed with both CSL040 and the full-length extracellular domain of HuCR1. Taken together, our data suggests that sialylation optimization is an important consideration for developing HuCR1-based therapeutic candidates such as CSL040 with improved PK properties and shows that CSL040 has superior PK/PD responses compared with full-length soluble HuCR1.


Subject(s)
Lectins , Polysaccharides , Animals , Complement C3b/metabolism , Complement C4b/metabolism , Glycosylation , Lectins/metabolism , Rats , Receptors, Complement/metabolism , Receptors, Complement 3b/metabolism , Tissue Distribution
4.
J Biol Chem ; 296: 100200, 2021.
Article in English | MEDLINE | ID: mdl-33334893

ABSTRACT

Human complement receptor 1 (HuCR1) is a pivotal regulator of complement activity, acting on all three complement pathways as a membrane-bound receptor of C3b/C4b, C3/C5 convertase decay accelerator, and cofactor for factor I-mediated cleavage of C3b and C4b. In this study, we sought to identify a minimal soluble fragment of HuCR1, which retains the complement regulatory activity of the wildtype protein. To this end, we generated recombinant, soluble, and truncated versions of HuCR1 and compared their ability to inhibit complement activation in vitro using multiple assays. A soluble form of HuCR1, truncated at amino acid 1392 and designated CSL040, was found to be a more potent inhibitor than all other truncation variants tested. CSL040 retained its affinity to both C3b and C4b as well as its cleavage and decay acceleration activity and was found to be stable under a range of buffer conditions. Pharmacokinetic studies in mice demonstrated that the level of sialylation is a major determinant of CSL040 clearance in vivo. CSL040 also showed an improved pharmacokinetic profile compared with the full extracellular domain of HuCR1. The in vivo effects of CSL040 on acute complement-mediated kidney damage were tested in an attenuated passive antiglomerular basement membrane antibody-induced glomerulonephritis model. In this model, CSL040 at 20 and 60 mg/kg significantly attenuated kidney damage at 24 h, with significant reductions in cellular infiltrates and urine albumin, consistent with protection from kidney damage. CSL040 thus represents a potential therapeutic candidate for the treatment of complement-mediated disorders.


Subject(s)
Complement Activation , Receptors, Complement 3b/immunology , Animals , Cell Line , Complement C3b/immunology , Complement C4b/immunology , Female , Glomerulonephritis/immunology , Glomerulonephritis/therapy , Humans , Mice , Mice, Inbred C57BL , Receptors, Complement 3b/chemistry , Receptors, Complement 3b/therapeutic use , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use
5.
PLoS One ; 15(11): e0238484, 2020.
Article in English | MEDLINE | ID: mdl-33232321

ABSTRACT

Antigen cross presentation, whereby exogenous antigens are presented by MHC class I molecules to CD8+ T cells, is essential for generating adaptive immunity to pathogens and tumor cells. Following endocytosis, it is widely understood that protein antigens must be transferred from endosomes to the cytosol where they are subject to ubiquitination and proteasome degradation prior to being translocated into the endoplasmic reticulum (ER), or possibly endosomes, via the TAP1/TAP2 complex. Revealing how antigens egress from endocytic organelles (endosome-to-cytosol transfer, ECT), however, has proved vexing. Here, we used two independent screens to identify the hydrogen peroxide-transporting channel aquaporin-3 (AQP3) as a regulator of ECT. AQP3 overexpression increased ECT, whereas AQP3 knockout or knockdown decreased ECT. Mechanistically, AQP3 appears to be important for hydrogen peroxide entry into the endosomal lumen where it affects lipid peroxidation and subsequent antigen release. AQP3-mediated regulation of ECT was functionally significant, as AQP3 modulation had a direct impact on the efficiency of antigen cross presentation in vitro. Finally, AQP3-/- mice exhibited a reduced ability to mount an anti-viral response and cross present exogenous extended peptide. Together, these results indicate that the AQP3-mediated transport of hydrogen peroxide can regulate endosomal lipid peroxidation and suggest that compromised membrane integrity and coordinated release of endosomal cargo is a likely mechanism for ECT.


Subject(s)
Aquaporin 3/metabolism , Cytosol/metabolism , Endosomes/metabolism , Animals , Antigen Presentation , Aquaporin 3/genetics , Biological Transport , Cells, Cultured , Gene Knockout Techniques , HEK293 Cells , Humans , Lipid Peroxidation , Mice
6.
J Immunol ; 205(5): 1433-1440, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32839213

ABSTRACT

Ischemia-reperfusion injury (IRI) is a complex inflammatory process that detrimentally affects the function of transplanted organs. Neutrophils are important contributors to the pathogenesis of renal IRI. Signaling by G-CSF, a regulator of neutrophil development, trafficking, and function, plays a key role in several neutrophil-associated inflammatory disease models. In this study, we investigated whether targeting neutrophils with a neutralizing mAb to G-CSFR would reduce inflammation and protect against injury in a mouse model of warm renal IRI. Mice were treated with anti-G-CSFR 24 h prior to 22-min unilateral renal ischemia. Renal function and histology, complement activation, and expression of kidney injury markers, and inflammatory mediators were assessed 24 h after reperfusion. Treatment with anti-G-CSFR protected against renal IRI in a dose-dependent manner, significantly reducing serum creatinine and urea, tubular injury, neutrophil and macrophage infiltration, and complement activation (plasma C5a) and deposition (tissue C9). Renal expression of several proinflammatory genes (CXCL1/KC, CXCL2/MIP-2, MCP-1/CCL2, CXCR2, IL-6, ICAM-1, P-selectin, and C5aR) was suppressed by anti-G-CSFR, as was the level of circulating P-selectin and ICAM-1. Neutrophils in anti-G-CSFR-treated mice displayed lower levels of the chemokine receptor CXCR2, consistent with a reduced ability to traffic to inflammatory sites. Furthermore, whole transcriptome analysis using RNA sequencing showed that gene expression changes in IRI kidneys after anti-G-CSFR treatment were indistinguishable from sham-operated kidneys without IRI. Hence, anti-G-CSFR treatment prevented the development of IRI in the kidneys. Our results suggest G-CSFR blockade as a promising therapeutic approach to attenuate renal IRI.


Subject(s)
Kidney Diseases/drug therapy , Protective Agents/pharmacology , Receptors, Granulocyte Colony-Stimulating Factor/antagonists & inhibitors , Reperfusion Injury/drug therapy , Animals , Chemokines/metabolism , Complement Activation/drug effects , Creatinine/blood , Disease Models, Animal , Gene Expression/drug effects , Inflammation/blood , Inflammation/drug therapy , Inflammation/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney Diseases/blood , Kidney Diseases/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Neutrophils/drug effects , Neutrophils/metabolism , Reperfusion Injury/blood , Reperfusion Injury/metabolism , Urea/blood
7.
Cancer Immunol Immunother ; 69(10): 1959-1972, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32388678

ABSTRACT

Cancer vaccine development has proven challenging with the exception of some virally induced cancers for which prophylactic vaccines exist. Currently, there is only one FDA approved vaccine for the treatment of prostate cancer and as such prostate cancer continues to present a significant unmet medical need. In this study, we examine the effectiveness of a therapeutic cancer vaccine that combines the ISCOMATRIX™ adjuvant (ISCOMATRIX) with the Toll-like receptor 3 agonist, polyinosinic-polycytidylic acid (Poly I:C), and Flt3L, FMS-like tyrosine kinase 3 ligand. We employed the TRAMP-C1 (transgenic adenocarcinoma of the mouse prostate) model of prostate cancer and the self-protein mPAP (prostatic acid phosphatase) as the tumor antigen. ISCOMATRIX™-mPAP-Poly I:C-Flt3L was delivered in a therapeutic prime-boost regime that was consistently able to achieve complete tumor regression in 60% of animals treated and these tumor-free animals were protected upon rechallenge. Investigations into the underlying immunological mechanisms contributing to the effectiveness of this vaccine identified that both innate and adaptive responses are elicited and required. NK cells, CD4+ T cells and interferon-γ were all found to be critical for tumor control while tumor infiltrating CD8+ T cells became disabled by an immunosuppressive microenvironment. There is potential for broader application of this cancer vaccine, as we have been able to demonstrate effectiveness in two additional cancer models; melanoma (B16-OVA) and a model of B cell lymphoma (Eµ-myc-GFP-OVA).


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/administration & dosage , Cholesterol/administration & dosage , Melanoma, Experimental/immunology , Phospholipids/administration & dosage , Prostatic Neoplasms/immunology , Saponins/administration & dosage , Animals , Apoptosis , CD8-Positive T-Lymphocytes/drug effects , Cell Proliferation , Disease Models, Animal , Drug Combinations , Humans , Interferon-gamma/metabolism , Male , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Membrane Proteins/immunology , Mice , Mice, Inbred C57BL , Ovalbumin/immunology , Poly I-C/administration & dosage , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Tumor Cells, Cultured , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
8.
Autoimmun Rev ; 18(10): 102366, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31404703

ABSTRACT

In recent years, there has been a surge in the research and development of novel molecules as potential therapeutic alternatives to traditional treatments (such as intravenous immunoglobulins) for autoimmune disorders. The aim of this review is to describe different drug development strategies and evaluate how various molecules have performed in clinical trials to date. Broadly, three main approaches have been pursued. Recombinant fragment crystallisable (rFc) multimers primarily target Fcγ receptors (FcγRs) but may also affect the complement system. These include PF-06755347 (GL-2045), CSL730 (M230), CSL777 and Pan Fc Receptor Interacting Molecule (PRIM). Neonatal Fc receptor (FcRn)-targeting therapeutics block the FcRn receptor and are represented by candidate drugs such as the Fc fragment efgartigimod and the monoclonal antibodies rozanolixizumab (UCB7665), M281 and SYNT001. Finally, Fc and FcγR-targeting therapeutics, comprise molecules that target the Fc of IgG, such as the recombinant soluble FcγIIb receptor valziflocept (SM101/SHP652) and various monoclonal antibodies directed against the receptors. The developmental status of these three classes of molecules ranges from preclinical to ongoing phase 3 clinical studies. Efgartigimod and rozanolixizumab are the most advanced and have demonstrated encouraging results from phase 2 trials in immune thrombocytopenia and myasthenia gravis. Although initial results are promising, further long-term data and a better understanding of the unique mechanisms of action of the different molecules are needed. The efficacy, safety, convenience of administration, duration of effects, and cost will all contribute to determining which of the molecules will be successful in the clinic.


Subject(s)
Autoimmune Diseases/therapy , Biological Products/therapeutic use , Immunoglobulin Fc Fragments/immunology , Molecular Targeted Therapy , Receptors, Fc/antagonists & inhibitors , Animals , Autoimmune Diseases/immunology , Humans , Receptors, Fc/immunology
9.
Transplant Direct ; 5(4): e341, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30993186

ABSTRACT

BACKGROUND: Complement activation plays an important role in the pathogenesis of renal ischemia-reperfusion (IR) injury (IRI), but whether this involves damage to the vasculoprotective endothelial glycocalyx is not clear. We investigated the impact of complement activation on glycocalyx integrity and renal dysfunction in a mouse model of renal IRI. METHODS: Right nephrectomized male C57BL/6 mice were subjected to 22 minutes left renal ischemia and sacrificed 24 hours after reperfusion to analyze renal function, complement activation, glycocalyx damage, endothelial cell activation, inflammation, and infiltration of neutrophils and macrophages. RESULTS: Ischemia-reperfusion induced severe renal injury, manifested by significantly increased serum creatinine and urea, complement activation and deposition, loss of glycocalyx, endothelial activation, inflammation, and innate cell infiltration. Treatment with the anti-C5 antibody BB5.1 protected against IRI as indicated by significantly lower serum creatinine (P = 0.04) and urea (P = 0.003), tissue C3b/c and C9 deposition (both P = 0.004), plasma C3b (P = 0.001) and C5a (P = 0.006), endothelial vascular cell adhesion molecule-1 expression (P = 0.003), glycocalyx shedding (tissue heparan sulfate [P = 0.001], plasma syndecan-1 [P = 0.007], and hyaluronan [P = 0.02]), inflammation (high mobility group box-1 [P = 0.0003]), and tissue neutrophil (P = 0.0009) and macrophage (P = 0.004) infiltration. CONCLUSIONS: Together, our data confirm that the terminal pathway of complement activation plays a key role in renal IRI and demonstrate that the mechanism of injury involves shedding of the glycocalyx.

10.
Front Immunol ; 9: 2684, 2018.
Article in English | MEDLINE | ID: mdl-30524434

ABSTRACT

Dendritic cell activation of CD4 T cells in the lymph node draining a site of infection or vaccination is widely considered the central event in initiating adaptive immunity. The accepted dogma is that this occurs by stimulating local activation and antigen acquisition by dendritic cells, with subsequent lymph node migration, however the generalizability of this mechanism is unclear. Here we show that in some circumstances antigen can bypass the injection site inflammatory response, draining freely and rapidly to the lymph nodes where it interacts with subcapsular sinus (SCS) macrophages resulting in their death. Debris from these dying SCS macrophages is internalized by monocytes recruited from the circulation. This coordinated response leads to antigen presentation by monocytes and interactions with naïve CD4 T cells that can drive the initiation of T cell and B cell responses. These studies demonstrate an entirely novel pathway leading to initiation of adaptive immune responses in vivo.


Subject(s)
Antigen Presentation , CD4-Positive T-Lymphocytes/immunology , Lymph Nodes/immunology , Macrophages/immunology , Monocytes/immunology , Animals , B-Lymphocytes/cytology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/cytology , Lymph Nodes/cytology , Macrophages/cytology , Mice , Mice, Transgenic , Monocytes/cytology
11.
J Immunol ; 200(8): 2542-2553, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29531170

ABSTRACT

Activation of Fc receptors and complement by immune complexes is a common important pathogenic trigger in many autoimmune diseases and so blockade of these innate immune pathways may be an attractive target for treatment of immune complex-mediated pathomechanisms. High-dose IVIG is used to treat autoimmune and inflammatory diseases, and several studies demonstrate that the therapeutic effects of IVIG can be recapitulated with the Fc portion. Further, recent data indicate that recombinant multimerized Fc molecules exhibit potent anti-inflammatory properties. In this study, we investigated the biochemical and biological properties of an rFc hexamer (termed Fc-µTP-L309C) generated by fusion of the IgM µ-tailpiece to the C terminus of human IgG1 Fc. Fc-µTP-L309C bound FcγRs with high avidity and inhibited FcγR-mediated effector functions (Ab-dependent cell-mediated cytotoxicity, phagocytosis, respiratory burst) in vitro. In addition, Fc-µTP-L309C prevented full activation of the classical complement pathway by blocking C2 cleavage, avoiding generation of inflammatory downstream products (C5a or sC5b-9). In vivo, Fc-µTP-L309C suppressed inflammatory arthritis in mice when given therapeutically at approximately a 10-fold lower dose than IVIG, which was associated with reduced inflammatory cytokine production and complement activation. Likewise, administration of Fc-µTP-L309C restored platelet counts in a mouse model of immune thrombocytopenia. Our data demonstrate a potent anti-inflammatory effect of Fc-µTP-L309C in vitro and in vivo, likely mediated by blockade of FcγRs and its unique inhibition of complement activation.


Subject(s)
Antibodies, Monoclonal/immunology , Antigen-Antibody Complex/immunology , Autoimmune Diseases/immunology , Complement System Proteins/immunology , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/immunology , Receptors, Fc/immunology , Animals , Antibody-Dependent Cell Cytotoxicity/immunology , Cell Line , Complement Activation/immunology , Humans , Inflammation/immunology , Male , Mice , Mice, Inbred BALB C , Phagocytosis/immunology , Receptors, IgG/immunology
12.
Front Immunol ; 9: 259, 2018.
Article in English | MEDLINE | ID: mdl-29515577

ABSTRACT

Devil facial tumor disease (DFTD) is renowned for its successful evasion of the host immune system. Down regulation of the major histocompatabilty complex class I molecule (MHC-I) on the DFTD cells is a primary mechanism of immune escape. Immunization trials on captive Tasmanian devils have previously demonstrated that an immune response against DFTD can be induced, and that immune-mediated tumor regression can occur. However, these trials were limited by their small sample sizes. Here, we describe the results of two DFTD immunization trials on cohorts of devils prior to their wild release as part of the Tasmanian Government's Wild Devil Recovery project. 95% of the devils developed anti-DFTD antibody responses. Given the relatively large sample sizes of the trials (N = 19 and N = 33), these responses are likely to reflect those of the general devil population. DFTD cells manipulated to express MHC-I were used as the antigenic basis of the immunizations in both trials. Although the adjuvant composition and number of immunizations differed between trials, similar anti-DFTD antibody levels were obtained. The first trial comprised DFTD cells and the adjuvant combination of ISCOMATRIX™, polyIC, and CpG with up to four immunizations given at monthly intervals. This compared to the second trial whereby two immunizations comprising DFTD cells and the adjuvant combination ISCOMATRIX™, polyICLC (Hiltonol®) and imiquimod were given a month apart, providing a shorter and, therefore, more practical protocol. Both trials incorporated a booster immunization given up to 5 months after the primary course. A key finding was that devils in the second trial responded more quickly and maintained their antibody levels for longer compared to devils in the first trial. The different adjuvant combination incorporating the RNAase resistant polyICLC and imiquimod used in the second trial is likely to be responsible. The seroconversion in the majority of devils in these anti-DFTD immunization trials was remarkable, especially as DFTD is hallmarked by its immune evasion mechanisms. Microsatellite analyzes of MHC revealed that some MHC-I microsatellites correlated to stronger immune responses. These trials signify the first step in the long-term objective of releasing devils with immunity to DFTD into the wild.


Subject(s)
Adjuvants, Immunologic , Cancer Vaccines/immunology , Facial Neoplasms/immunology , Immunotherapy/methods , Marsupialia/immunology , Animals , Carboxymethylcellulose Sodium/analogs & derivatives , Female , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Imiquimod/immunology , Immunity, Humoral , Immunization, Secondary , Immunoglobulin G/blood , Male , Poly I-C/immunology , Polylysine/analogs & derivatives , Polylysine/immunology , Tumor Escape
13.
Sci Rep ; 7: 43827, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28276463

ABSTRACT

Devil facial tumour disease (DFTD) is a transmissible cancer devastating the Tasmanian devil (Sarcophilus harrisii) population. The cancer cell is the 'infectious' agent transmitted as an allograft by biting. Animals usually die within a few months with no evidence of antibody or immune cell responses against the DFTD allograft. This lack of anti-tumour immunity is attributed to an absence of cell surface major histocompatibility complex (MHC)-I molecule expression. While the endangerment of the devil population precludes experimentation on large experimental groups, those examined in our study indicated that immunisation and immunotherapy with DFTD cells expressing surface MHC-I corresponded with effective anti-tumour responses. Tumour engraftment did not occur in one of the five immunised Tasmanian devils, and regression followed therapy of experimentally induced DFTD tumours in three Tasmanian devils. Regression correlated with immune cell infiltration and antibody responses against DFTD cells. These data support the concept that immunisation of devils with DFTD cancer cells can successfully induce humoral responses against DFTD and trigger immune-mediated regression of established tumours. Our findings support the feasibility of a protective DFTD vaccine and ultimately the preservation of the species.


Subject(s)
Facial Neoplasms/immunology , Immunization/methods , Immunotherapy/methods , Marsupialia/immunology , Animals , Antibody Formation/immunology , Facial Neoplasms/therapy , Facial Neoplasms/veterinary , Female , Histocompatibility Antigens Class I/immunology , Immunity, Humoral/immunology , Male , Treatment Outcome
14.
J Immunol ; 197(11): 4392-4402, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27807194

ABSTRACT

G-CSF is a hemopoietic growth factor that has a role in steady state granulopoiesis, as well as in mature neutrophil activation and function. G-CSF- and G-CSF receptor-deficient mice are profoundly protected in several models of rheumatoid arthritis, and Ab blockade of G-CSF also protects against disease. To further investigate the actions of blocking G-CSF/G-CSF receptor signaling in inflammatory disease, and as a prelude to human studies of the same approach, we developed a neutralizing mAb to the murine G-CSF receptor, which potently antagonizes binding of murine G-CSF and thereby inhibits STAT3 phosphorylation and G-CSF receptor signaling. Anti-G-CSF receptor rapidly halted the progression of established disease in collagen Ab-induced arthritis in mice. Neutrophil accumulation in joints was inhibited, without rendering animals neutropenic, suggesting an effect of G-CSF receptor blockade on neutrophil homing to inflammatory sites. Consistent with this, neutrophils in the blood and arthritic joints of anti-G-CSF receptor-treated mice showed alterations in cell adhesion receptors, with reduced CXCR2 and increased CD62L expression. Furthermore, blocking neutrophil trafficking with anti-G-CSF receptor suppressed local production of proinflammatory cytokines (IL-1ß, IL-6) and chemokines (KC, MCP-1) known to drive tissue damage. Differential gene expression analysis of joint neutrophils showed a switch away from an inflammatory phenotype following anti-G-CSF receptor therapy in collagen Ab-induced arthritis. Importantly, G-CSF receptor blockade did not adversely affect viral clearance during influenza infection in mice. To our knowledge, we describe for the first time the effect of G-CSF receptor blockade in a therapeutic model of inflammatory joint disease and provide support for pursuing this therapeutic approach in treating neutrophil-associated inflammatory diseases.


Subject(s)
Antibodies, Neutralizing/pharmacology , Arthritis, Experimental/drug therapy , Gene Expression Regulation/drug effects , Neutrophil Infiltration/drug effects , Neutrophils/immunology , Receptors, Granulocyte Colony-Stimulating Factor/antagonists & inhibitors , Animals , Arthritis, Experimental/genetics , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Cytokines/genetics , Cytokines/immunology , Gene Expression Regulation/immunology , Granulocyte Colony-Stimulating Factor/genetics , Granulocyte Colony-Stimulating Factor/immunology , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/genetics , Inflammation/immunology , Joints/immunology , Joints/pathology , Male , Mice , Mice, Knockout , Neutrophil Infiltration/genetics , Neutrophil Infiltration/immunology , Neutrophils/pathology , Receptors, Granulocyte Colony-Stimulating Factor/genetics , Receptors, Granulocyte Colony-Stimulating Factor/immunology
15.
Vaccines (Basel) ; 4(4)2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27834857

ABSTRACT

We recently described the induction of an efficient CD8⁺ T cell-mediated immune response against a tumor-associated antigen (TAA) uploaded in engineered exosomes used as an immunogen delivery tool. This immune response cleared tumor cells inoculated after immunization, and controlled the growth of tumors implanted before immunization. We looked for new protocols aimed at increasing the CD8⁺ T cell specific response to the antigen uploaded in engineered exosomes, assuming that an optimized CD8⁺ T cell immune response would correlate with a more effective depletion of tumor cells in the therapeutic setting. By considering HPV-E6 as a model of TAA, we found that the in vitro co-administration of engineered exosomes and ISCOMATRIXTM adjuvant, i.e., an adjuvant composed of purified ISCOPREPTM saponin, cholesterol, and phospholipids, led to a stronger antigen cross-presentation in both B- lymphoblastoid cell lines ( and monocyte-derived immature dendritic cells compared with that induced by the exosomes alone. Consistently, the co-inoculation in mice of ISCOMATRIXTM adjuvant and engineered exosomes induced a significant increase of TAA-specific CD8⁺ T cells compared to mice immunized with the exosomes alone. This result holds promise for effective usage of exosomes as well as alternative nanovesicles in anti-tumor therapeutic approaches.

16.
Stem Cell Reports ; 7(3): 571-582, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27499199

ABSTRACT

Hematopoiesis is a multistage process involving the differentiation of stem and progenitor cells into distinct mature cell lineages. Here we present Haemopedia, an atlas of murine gene-expression data containing 54 hematopoietic cell types, covering all the mature lineages in hematopoiesis. We include rare cell populations such as eosinophils, mast cells, basophils, and megakaryocytes, and a broad collection of progenitor and stem cells. We show that lineage branching and maturation during hematopoiesis can be reconstructed using the expression patterns of small sets of genes. We also have identified genes with enriched expression in each of the mature blood cell lineages, many of which show conserved lineage-enriched expression in human hematopoiesis. We have created an online web portal called Haemosphere to make analyses of Haemopedia and other blood cell transcriptional datasets easier. This resource provides simple tools to interrogate gene-expression-based relationships between hematopoietic cell types and genes of interest.


Subject(s)
Blood Cells/cytology , Blood Cells/metabolism , Computational Biology , Gene Expression Regulation, Developmental , Hematopoiesis/genetics , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Cluster Analysis , Computational Biology/methods , Gene Expression Profiling , Humans , Mice , Web Browser
17.
Autoimmun Rev ; 15(8): 781-5, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27019051

ABSTRACT

Polyclonal plasma-derived IgG is a mainstay therapeutic of immunodeficiency disorders as well as of various inflammatory autoimmune diseases. In immunodeficiency the primary function of IVIG/SCIG is to replace missing antibody specificities, consequently a diverse Fab-based repertoire is critical for efficacy. Attempts to capture the Ig repertoire and express it as a recombinant IVIG product are currently ongoing. Likewise correction of the defective genes by gene therapy has also been tried. However, both approaches are far from becoming mainstream treatments. In contrast, some of the most important effector mechanisms relevant in therapy of autoimmunity are based on the Fc-portion of IgG; they include scavenging of complement and blockade/modulation of IgG receptors (Fc gamma receptor [FcγR] or the neonatal Fc receptor [FcRn]). These effects might be achieved with appropriately formulated Fc-fragments instead of full-length IgG, as suggested by a pilot study with monomeric plasma-derived Fc in children with ITP and in Kawasaki disease in the 1990s. Since then it has been proposed that structured multimerization of Fc fragments might confer efficacy at much lower doses than with IVIG. Accordingly, various molecular strategies are currently being explored to achieve controlled Fc multimerization, e.g. by fusion of IgG1 Fc to the IgG2 hinge-region or to the IgM tail-piece. Safety considerations will be crucial in the evaluation of these new entities. In a different approach, mutant Fc fragments and monoclonal antibodies have been designed for blockade of the FcRn.


Subject(s)
Immunoglobulins, Intravenous/therapeutic use , Immunoglobulins/therapeutic use , Immunologic Deficiency Syndromes/drug therapy , Animals , Antibodies, Monoclonal/therapeutic use , Biological Products/adverse effects , Biological Products/therapeutic use , Genetic Therapy , Humans , Immunoglobulin Fc Fragments/therapeutic use , Immunoglobulins/administration & dosage , Immunoglobulins/adverse effects , Immunoglobulins, Intravenous/adverse effects , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/therapy , Inflammation/drug therapy , Injections, Subcutaneous , Receptors, Fc/antagonists & inhibitors
18.
J Immunol ; 194(5): 2199-207, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25646304

ABSTRACT

The development of therapeutic vaccines for treatment of established cancer has proven challenging. Cancer vaccines not only need to induce a robust tumor Ag-specific immune response but also need to overcome the tolerogenic and immunosuppressive microenvironments that exist within many solid cancers. ISCOMATRIX adjuvant (ISCOMATRIX) is able to induce both tumor Ag-specific cellular and Ab responses to protect mice against tumor challenge, but this is insufficient to result in regression of established solid tumors. In the current study, we have used B16-OVA melanoma, Panc-OVA pancreatic, and TRAMP-C1 prostate cancer mouse tumor models to test therapeutic efficacy of ISCOMATRIX vaccines combined with other immune modulators. The coadministration of an ISCOMATRIX vaccine with the TLR3 agonist, polyinosinic-polycytidylic acid, and TLR9 agonist, CpG, reduced tumor growth in all tumor models and the presence of ISCOMATRIX in the formulation was critical for the therapeutic efficacy of the vaccine. This vaccine combination induced a robust and multifunctional CD8(+) T cell response. Therapeutic protection required IFN-γ and CD8(+) T cells, whereas NK and CD4(+) T cells were found to be redundant. ISCOMATRIX vaccines combined with TLR3 and TLR9 agonists represent a promising cancer immunotherapy strategy.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , Cancer Vaccines/administration & dosage , Cholesterol/administration & dosage , Melanoma, Experimental/therapy , Pancreatic Neoplasms/therapy , Phospholipids/administration & dosage , Prostatic Neoplasms/therapy , Saponins/administration & dosage , Skin Neoplasms/therapy , Adjuvants, Immunologic/administration & dosage , Animals , CD8-Positive T-Lymphocytes/immunology , Cytotoxicity, Immunologic , Drug Combinations , Humans , Immunotherapy/methods , Male , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/mortality , Mice , Mice, Knockout , Neoplasm Transplantation , Oligodeoxyribonucleotides/pharmacology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/mortality , Poly I-C/pharmacology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/immunology , Prostatic Neoplasms/mortality , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/mortality , Survival Analysis , Toll-Like Receptor 3/antagonists & inhibitors , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/immunology , Toll-Like Receptor 9/antagonists & inhibitors , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/immunology , Tumor Burden/drug effects
19.
J Med Microbiol ; 61(Pt 7): 935-943, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22442293

ABSTRACT

The ISCOMATRIX adjuvant has antigen delivery and presentation properties as well as immunomodulatory capabilities, which combine to provide enhanced and accelerated immune responses. The responses are broad, including a range of subclasses of antibodies as well as CD4(+) and CD8(+) T-cells. A range of ISCOMATRIX vaccines (ISCOMATRIX adjuvant combined with antigen) have now been tested in clinical trials and have been shown to be generally safe and well tolerated as well as immunogenic, generating both antibody (Ab) and T-cell responses. The mechanisms by which ISCOMATRIX adjuvant facilitates its immune effects are the scope of significant study and indicate that ISCOMATRIX adjuvant (i) rapidly traffics antigen into the cytosol of multiple dendritic cell subsets, (ii) induces the induction of an array of cytokines and chemokines and (iii) links the innate and adaptive immune responses in vivo in a Toll-like-receptor-independent but MyD88-dependent manner. These data highlight the clinical utility of ISCOMATRIX adjuvant in the development of prophylactic and therapeutic vaccines for infectious disease.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Cholesterol/administration & dosage , Communicable Diseases/therapy , Immunotherapy/methods , Phospholipids/administration & dosage , Saponins/administration & dosage , Vaccination/methods , Vaccines/administration & dosage , Vaccines/immunology , Communicable Disease Control , Drug Combinations , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...