Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 8(6): 2891-6, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18681023

ABSTRACT

In planar nano-magnetic devices magnetization direction is kept close to a given plane by the large easy-plane magnetic anisotropy, for example by the shape anisotropy in a thin film. In this case magnetization shows effectively in-plane dynamics with only one angle required for its description. Moreover, the motion can become overdamped even for small values of Gilbert damping. We derive the equations of effective in-plane dynamics in the presence of spin-transfer torques. The simplifications achieved in the overdamped regime allow to study systems with several dynamic magnetic pieces ("free layers"). A transition from a spin-transfer device with a static polarizer to a device with two equivalent magnets is observed. When the size difference between the magnets is less than critical, the device does not exhibit switching, but goes directly into the "windmill" precession state.

2.
Phys Rev Lett ; 100(12): 127204, 2008 Mar 28.
Article in English | MEDLINE | ID: mdl-18517907

ABSTRACT

We express the dynamics of domain walls in ferromagnetic nanowires in terms of collective coordinates, generalizing Thiele's steady-state results. For weak external perturbations the dynamics is dominated by a few soft modes. The general approach is illustrated on the example of a vortex wall relevant to recent experiments with flat nanowires. A two-mode approximation gives a quantitatively accurate description of both the steady viscous motion of the wall in weak magnetic fields and its oscillatory behavior in moderately high fields above the Walker breakdown.

3.
Phys Rev Lett ; 96(19): 197207, 2006 May 19.
Article in English | MEDLINE | ID: mdl-16803140

ABSTRACT

The motion of magnetic domain walls in permalloy nanowires is investigated by real-time resistance measurements. The domain wall velocity is measured as a function of the magnetic field in the presence of a current flowing through the nanowire. We show that the current can significantly increase or decrease the domain wall velocity, depending on its direction. These results are understood within a one-dimensional model of the domain wall dynamics which includes the spin transfer torque.

4.
Math Biosci Eng ; 3(2): 347-70, 2006 Apr.
Article in English | MEDLINE | ID: mdl-20361828

ABSTRACT

In this paper we propose a mathematical model for nematode sperm cell crawling. The model takes into account both force and energy balance in the process of lamellipodium protrusion and cell nucleus drag. It is shown that by specifying the (possibly variable) efficiency of the major sperm protein biomotor one completely determines a self-consistent problem of the lamellipodium-nucleus motion. The model thus obtained properly accounts for the feedback of the load on the lamellipodium protrusion, which in general should not be neglected. We study and analyze the steady crawling state for a particular efficiency function and find that all nonzero modes, up to a large magnitude, are linearly asymptotically stable, thus reproducing the experimental observations of the long periods of steady crawling exhibited by the nematode sperm cells.

5.
Phys Rev Lett ; 90(11): 116601, 2003 Mar 21.
Article in English | MEDLINE | ID: mdl-12688949

ABSTRACT

We investigate the behavior of the Hall coefficient in the case of antiferromagnetism driven by Fermi-surface nesting, and find that the Hall coefficient should abruptly increase with the onset of magnetism, as recently observed in vanadium doped chromium. This effect is due to the sudden removal of flat portions of the Fermi surface upon magnetic ordering. Within this picture, the Hall coefficient should scale as the square of the residual resistivity divided by the impurity concentration, which is consistent with available data.

6.
Phys Rev Lett ; 89(26): 267001, 2002 Dec 23.
Article in English | MEDLINE | ID: mdl-12484851

ABSTRACT

The superconducting critical temperature (T(c)) of ferromagnet-superconductor-ferromagnet systems has been predicted to exhibit a dependence on the magnetization orientation of the ferromagnetic layers such that T(AP)(c)>T(P)(c) for parallel (P) and antiparallel (AP) configurations of the two ferromagnetic layers. We have grown CuNi/Nb/CuNi films via magnetron sputtering and confirmed the theoretical prediction by measuring the resistance of the system as a function of temperature and magnetic field. We find an approximately 25% resistance drop occurs near T(c) in Cu0.47Ni0.53(5 nm)/Nb(18)/CuNi(5) when the two CuNi layers change their magnetization directions from parallel to antiparallel, whereas there is no corresponding resistance change in the normal state.

SELECTION OF CITATIONS
SEARCH DETAIL
...