Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 8(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36135261

ABSTRACT

The synthesis of hydrogel beads involving natural polymers is, nowadays, a leading research area. Among natural polymers, starch and chitosan represent two biomolecules with proof of efficiency and low economic impact in various utilization fields. Therefore, herein, the features of hydrogel beads obtained from chitosan and three sorts of starch (potato, wheat and rise starches), grafted with acrylonitrile and then amidoximated, were deeply investigated for their use as sorbents for heavy metal ions and dyes. The hydrogel beads were prepared by ionotropic gelation/covalent cross-linking of chitosan and functionalized starches. The chemical structure of the hydrogel beads was analyzed by FT-IR spectroscopy; their morphology was revealed by optical and scanning electron microscopies, while the influence of the starch functionalization strategies on the crystallinity changes was evaluated by X-ray diffraction. Molecular dynamics simulations were used to reveal the influence of the grafting reactions and grafted structure on the starch conformation in solution and their interactions with chitosan. The sorption capacity of the hydrogel beads was tested in batch experiments, as a function of the beads' features (synthesis protocol, starch sort) and simulated polluted water, which included heavy metal ions (Cu2+, Co2+, Ni2+ and Zn2+) and small organic molecules (Direct Blue 15 and Congo red).

2.
Biomacromolecules ; 23(1): 89-99, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34965089

ABSTRACT

Herein, we report a simple method to obtain hydrophobic surfaces by surface modification with calcium carbonate via diffusion-controlled crystallization using a cheap, versatile, and super-hydrophilic cellulose-based nonwoven material (NWM) as the substrate. To control the CaCO3 crystal growth, the ammonium carbonate diffusion method was applied in the presence of polyanions [poly(acid acrylic), poly(2-acrylamido-2-methylpropanesulfonic acid), and a copolymer which contains 55 mol % 2-acrylamido-2-methylpropanesulfonic acid and 45 mol % acrylic acid] or nonstoichiometric polyelectrolyte complexes with polycations [poly(allylamine hydrochloride) and chitosan] on a pristine NWM and on polycation-treated surfaces. The surface morphology obtained by calcite growth under surface or environmental functional groups' influence and the hydrophilic/hydrophobic character of the composite materials were followed and compared to that of the starting material. The obtained composite materials become hydrophobic, having a contact angle in the range of 110-135°. The capacity of tetracycline sorption and release by selected modified surfaces were followed and compared to the untreated NWM. Also, the biological properties were evaluated in terms of biocompatibility, antibacterial activity, and antifouling capability.


Subject(s)
Cellulose , Polymers , Calcium Carbonate/chemistry , Cellulose/chemistry , Crystallization , Hydrophobic and Hydrophilic Interactions , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...