Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37425691

ABSTRACT

Magnetoencephalography (MEG) is a non-invasive functional imaging technique for pre-surgical mapping. However, movement-related MEG functional mapping of primary motor cortex (M1) has been challenging in presurgical patients with brain lesions and sensorimotor dysfunction due to the large numbers of trails needed to obtain adequate signal to noise. Moreover, it is not fully understood how effective the brain communication is with the muscles at frequencies above the movement frequency and its harmonics. We developed a novel Electromyography (EMG)-projected MEG source imaging technique for localizing M1 during ~1 minute recordings of left and right self-paced finger movements (~1 Hz). High-resolution MEG source images were obtained by projecting M1 activity towards the skin EMG signal without trial averaging. We studied delta (1-4 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (15-30 Hz), and gamma (30-90 Hz) bands in 13 healthy participants (26 datasets) and two presurgical patients with sensorimotor dysfunction. In healthy participants, EMG-projected MEG accurately localized M1 with high accuracy in delta (100.0%), theta (100.0%), and beta (76.9%) bands, but not alpha (34.6%) and gamma (0.0%) bands. Except for delta, all other frequency bands were above the movement frequency and its harmonics. In both presurgical patients, M1 activity in the affected hemisphere was also accurately localized, despite highly irregular EMG movement patterns in one patient. Altogether, our EMG-projected MEG imaging approach is highly accurate and feasible for M1 mapping in presurgical patients. The results also provide insight into movement related brain-muscle coupling above the movement frequency and its harmonics.

2.
Epilepsia ; 51(Suppl 5): 18, 2010 Dec.
Article in English | MEDLINE | ID: mdl-24850952

ABSTRACT

Neuronal synchronization occurs when two or more neuronal events are coordinated across time. Local synchronization produces field potentials. Long-range synchronization between distant brain sites contributes to the electroencephalogram. Neuronal synchronization depends on synaptic (chemical/electrical), ephaptic, and extracellular interactions. For an expanded treatment of this topic see Jasper's Basic Mechanisms of the Epilepsies, Fourth Edition (Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, eds) published by Oxford University Press (available on the National Library of Medicine Bookshelf [NCBI] at www.ncbi.nlm.nih.gov/books).

3.
Neuroscientist ; 16(1): 19-27, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19359668

ABSTRACT

Acute cerebral cortical trauma often leads to paroxysmal activities that terminate in a few hours, but several months later, patients can develop epilepsy. The process occurring between the initial acute triggered seizures and the onset of spontaneous unprovoked seizures is termed epileptogenesis. Here the authors summarize recent morphological, electrophysiological, and computational studies demonstrating that partial cortical isolation increases the number and duration of silent states in the cortical network, boosting neuronal connectivity and network excitability. These changes develop progressively, and after several weeks their synergetic action leads to epilepsy.


Subject(s)
Brain Injuries/complications , Brain Injuries/physiopathology , Epilepsy/etiology , Epilepsy/physiopathology , Neuronal Plasticity/physiology , Synapses/physiology , Animals , Cerebral Cortex/physiopathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...