Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochimie ; 222: 101-108, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38447859

ABSTRACT

Understanding the diversity of DNA structure and functions in biology requires tools to study this biomolecule selectively and thoroughly. Fluorescence methods are powerful technique for non-invasive research. Due to the low quantum yield, the intrinsic fluorescence of nucleotides has not been considered for use in the detection and differentiation of nucleic acid bases. Here, we have studied the influence of protonation of nucleotides on their fluorescence properties. We show that protonation of ATP and GTP leads to enhanced intrinsic fluorescence. Fluorescence enhancement at acidic pH has been observed for double-stranded DNA and single-stranded oligonucleotides. The formation of G4 secondary structures apparently protected certain nucleotides from protonation, resulting in less pronounced fluorescence enhancement. Furthermore, acid-induced depurination under protonation was less noticeable in G4 structures than in double-stranded and single-stranded DNA. We show that changes in the intrinsic fluorescence of guanine can be used as a sensitive sensor for changes in the structure of the DNA and for the protonation of specific nucleotides.


Subject(s)
DNA , Guanine , Guanosine Triphosphate , Protons , Guanine/chemistry , DNA/chemistry , Guanosine Triphosphate/chemistry , Guanosine Triphosphate/metabolism , Hydrogen-Ion Concentration , Fluorescence , Spectrometry, Fluorescence/methods , DNA, Single-Stranded/chemistry , Adenosine Triphosphate/chemistry , Nucleic Acid Conformation , G-Quadruplexes
2.
IUBMB Life ; 71(11): 1815-1823, 2019 11.
Article in English | MEDLINE | ID: mdl-31359602

ABSTRACT

O-acetylhomoserine sulfhydrylase (OAHS) is a pyridoxal 5'-phosphate-dependent enzyme involved in microbial methionine biosynthesis. In this study, we report gene cloning, protein purification, and some biochemical characteristics of OAHS from Clostridioides difficile. The enzyme is a tetramer with molecular weight of 185 kDa. It possesses a high activity in the reaction of L-homocysteine synthesis, comparable to reported activities of OAHSes from other sources. OAHS activity is inhibited by metabolic end product L-methionine. L-Propargylglycine was found to be a suicide inhibitor of the enzyme. Substrate analogue Nγ -acetyl-L-2,4-diaminobutyric acid is a competitive inhibitor of OAHS with Ki = 0.04 mM. Analysis of C. difficile genome allows to suggest that the bacterium uses the way of direct sulfhydrylation for the synthesis of L-methionine. The data obtained may provide the basis for further study of the role of OAHS in the pathogenic bacterium and the development of potential inhibitors.


Subject(s)
Alkynes/metabolism , Carbon-Oxygen Lyases/metabolism , Cloning, Molecular/methods , Clostridioides difficile/enzymology , Glycine/analogs & derivatives , Methionine/biosynthesis , Pyridoxal Phosphate/metabolism , Sulfhydryl Compounds/metabolism , Amino Acid Sequence , Carbon-Oxygen Lyases/genetics , Clostridioides difficile/genetics , Genome, Bacterial , Glycine/metabolism , Sequence Homology , Substrate Specificity
3.
Biochim Biophys Acta ; 1854(9): 1220-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25584856

ABSTRACT

In the spatial structure of methionine γ-lyase (MGL, EC 4.4.1.11) from Citrobacter freundii, Tyr58 is located at H-bonding distance to the oxygen atom of the phosphate "handle" of pyridoxal 5'-phosphate (PLP). It was replaced for phenylalanine by site-directed mutagenesis. The X-ray structure of the mutant enzyme was determined at 1.96Å resolution. Comparison of spatial structures and absorption spectra of wild-type and mutant holoenzymes demonstrated that the replacement did not result in essential changes of the conformation of the active site Tyr58Phe MGL. The Kd value of PLP for Tyr58Phe MGL proved to be comparable to the Kd value for the wild-type enzyme. The replacement led to a decrease of catalytic efficiencies in both γ- and ß-elimination reactions of about two orders of magnitude as compared to those for the wild-type enzyme. The rates of exchange of C-α- and C-ß- protons of inhibitors in D2O catalyzed by the mutant form are comparable with those for the wild-type enzyme. Spectral data on the complexes of the mutant form with the substrates and inhibitors showed that the replacement led to a change of rate the limiting step of the physiological reaction. The results allowed us to conclude that Tyr58 is involved in an optimal positioning of the active site Lys210 at some stages of γ- and ß-elimination reactions. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.


Subject(s)
Carbon-Sulfur Lyases/chemistry , Citrobacter freundii/enzymology , Carbon-Sulfur Lyases/metabolism , Catalytic Domain , Kinetics , Magnetic Resonance Spectroscopy , Tyrosine
4.
Biochim Biophys Acta ; 1814(6): 834-42, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20601224

ABSTRACT

Pyridoxal 5'-phosphate (PLP) dependent methionine γ-lyase catalyzes the breakdown of L-methionine to α-ketobutyric acid, methanethiol and ammonia. This enzyme, present in anaerobic microorganisms, has biomedical interest both for its activity as antitumor agent, depleting methionine supply in methionine-dependent cancers, and as target in the treatment of human pathogen infections, activating the pro-drug trifluoromethionine. To validate the structure of the enzyme from Citrobacter freundii, crystallized from monomethyl ether polyethylene glycol 2000, for the development of lead compounds, the reactivity of the crystalline enzyme towards L-methionine, substrate analogs and inhibitors was determined by polarized absorption microspectrophotometry. Spectral data were also collected for enzyme crystals, grown in monomethyl ether polyethylene glycol 2000 in the presence of ammonium sulfate. The three-dimensional structure of these enzyme crystals, solved at 1.65Å resolution with R(free) 23.2%, revealed the surprising absence of the aldimine bond between the active site Lys210 and PLP. Different hypothesis are proposed and discussed in the light of spectral and structural data, pointing out to the relevance of the complementarity between X-ray crystallography and single crystal spectroscopy for the understanding of biological mechanisms at molecular level. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.


Subject(s)
Carbon-Sulfur Lyases/chemistry , Amino Acids , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Carbon-Sulfur Lyases/metabolism , Citrobacter freundii/enzymology , Crystallography, X-Ray , Microspectrophotometry , Models, Molecular , Pyridoxal Phosphate/metabolism , Structure-Activity Relationship
5.
J Biomol Struct Dyn ; 19(6): 999-1006, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12023802

ABSTRACT

Structure of recombinant glutamate decarboxylase (GAD alpha) was studied by optical methods and electron microscopy. The active (pH 4.6) and inert (pH 6.3) holoGAD and apoGAD were investigated. Absorption and CD spectra were recorded in the range of 190 - 500 nm. Visible spectra were resolved into the bands corresponding to individual electron transitions using lognormal curves. The structures of predominant tautomers of internal aldimines were determined as ketoenamine at pH 4.6 and enolimine at pH 6.3. CD spectra show that holoGAD and apoGAD exhibit a negative band at 204 - 245 nm and a positive band near 190 - 204 nm. The contents of the secondary structure elements were estimated on the basis of the values of the mean residue ellipticity. Evidently, the main difference between the GAD forms studied is in the content of alpha-helix and random coil. HoloGAD has 50% of alpha-helix at pH 4.6 and 67% at pH 6.3, whereas apoGAD - 17 and 27%, respectively. Thus presented data establish the essential role of pyridoxal phosphate (PLP) in the organization of the GAD secondary structure due to tightening its polypeptide chain. It seems possible, that conformational changes induced by PLP binding stabilize the protein structure and promote the assembly of subunits into macromolecule, which was confirmed by electron microscopy.


Subject(s)
Escherichia coli/enzymology , Glutamate Decarboxylase/chemistry , Circular Dichroism , Isoenzymes/chemistry , Microscopy, Electron , Protein Structure, Quaternary , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...