Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Comput Methods Appl Mech Eng ; 330: 522-546, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29736092

ABSTRACT

This work formulates frictionless contact between solid bodies in terms of a repulsive potential energy term and illustrates how numerical integration of the resulting forces is computationally similar to the "pinball algorithm" proposed and studied by Belytschko and collaborators in the 1990s. We thereby arrive at a numerical approach that has both the theoretical advantages of a potential-based formulation and the algorithmic simplicity, computational efficiency, and geometrical versatility of pinball contact. The singular nature of the contact potential requires a specialized nonlinear solver and an adaptive time stepping scheme to ensure reliable convergence of implicit dynamic calculations. We illustrate the effectiveness of this numerical method by simulating several benchmark problems and the structural mechanics of the right atrioventricular (tricuspid) heart valve. Atrioventricular valve closure involves contact between every combination of shell surfaces, edges of shells, and cables, but our formulation handles all contact scenarios in a unified manner. We take advantage of this versatility to demonstrate the effects of chordal rupture on tricuspid valve coaptation behavior.

2.
Soft Matter ; 14(8): 1417-1426, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29388999

ABSTRACT

Durotaxis refers to cell motion directed by stiffness gradients of an underlying substrate. Recent work has shown that droplets also move spontaneously along stiffness gradients through a process reminiscent of durotaxis. Wetting droplets, however, move toward softer substrates, an observation seemingly at odds with cell motion. Here, we extend our understanding of this phenomenon, and show that wettability of the substrate plays a critical role: while wetting droplets move in the direction of lower stiffness, nonwetting liquids reverse droplet durotaxis. Our numerical experiments also reveal that Laplace pressure can be used to determine the direction of motion of liquid slugs in confined environments. Our results suggest new ways of controlling droplet dynamics at small scales, which can open the door to enhanced bubble and droplet logic in microfluidic platforms.

3.
Article in English | MEDLINE | ID: mdl-28744968

ABSTRACT

In computational fluid dynamics, incoming velocity at open boundaries, or backflow, often yields unphysical instabilities already for moderate Reynolds numbers. Several treatments to overcome these backflow instabilities have been proposed in the literature. However, these approaches have not yet been compared in detail in terms of accuracy in different physiological regimes, in particular because of the difficulty to generate stable reference solutions apart from analytical forms. In this work, we present a set of benchmark problems in order to compare different methods in different backflow regimes (with a full reversal flow and with propagating vortices after a stenosis). The examples are implemented in FreeFem++, and the source code is openly available, making them a solid basis for future method developments.


Subject(s)
Models, Theoretical , Benchmarking , Blood Flow Velocity/physiology , Hydrodynamics
4.
Comput Math Appl ; 74(9): 2068-2088, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29225420

ABSTRACT

This paper discusses a method of stabilizing Lagrange multiplier fields used to couple thin immersed shell structures and surrounding fluids. The method retains essential conservation properties by stabilizing only the portion of the constraint orthogonal to a coarse multiplier space. This stabilization can easily be applied within iterative methods or semi-implicit time integrators that avoid directly solving a saddle point problem for the Lagrange multiplier field. Heart valve simulations demonstrate applicability of the proposed method to 3D unsteady simulations. An appendix sketches the relation between the proposed method and a high-order-accurate approach for simpler model problems.

5.
Comput Mech ; 55(6): 1211-1225, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26392645

ABSTRACT

This paper builds on a recently developed immersogeometric fluid-structure interaction (FSI) methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the proposed framework in the areas of geometry design and constitutive modeling. With these enhancements, BHV FSI simulations may be performed with greater levels of automation, robustness and physical realism. In addition, the paper presents a comparison between FSI analysis and standalone structural dynamics simulation driven by prescribed transvalvular pressure, the latter being a more common modeling choice for this class of problems. The FSI computation achieved better physiological realism in predicting the valve leaflet deformation than its standalone structural dynamics counterpart.

6.
Comput Methods Appl Mech Eng ; 284: 1005-1053, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25541566

ABSTRACT

In this paper, we develop a geometrically flexible technique for computational fluid-structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture geometry on non-boundary-fitted analysis meshes. We introduce the term "immersogeometric analysis" to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid-structure interface traction, arriving at Nitsche's method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations.

7.
J R Soc Interface ; 11(97): 20140301, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-24872502

ABSTRACT

Over decades, the theoretical and applied mechanics community has developed sophisticated approaches for analysing the behaviour of complex engineering systems. Most of these approaches have targeted systems in the transportation, materials, defence and energy industries. Applying and further developing engineering approaches for understanding, predicting and modulating the response of complicated biomedical processes not only holds great promise in meeting societal needs, but also poses serious challenges. This report, prepared for the US National Committee on Theoretical and Applied Mechanics, aims to identify the most pressing challenges in biological sciences and medicine that can be tackled within the broad field of mechanics. This echoes and complements a number of national and international initiatives aiming at fostering interdisciplinary biomedical research. This report also comments on cultural/educational challenges. Specifically, this report focuses on three major thrusts in which we believe mechanics has and will continue to have a substantial impact. (i) Rationally engineering injectable nano/microdevices for imaging and therapy of disease. Within this context, we discuss nanoparticle carrier design, vascular transport and adhesion, endocytosis and tumour growth in response to therapy, as well as uncertainty quantification techniques to better connect models and experiments. (ii) Design of biomedical devices, including point-of-care diagnostic systems, model organ and multi-organ microdevices, and pulsatile ventricular assistant devices. (iii) Mechanics of cellular processes, including mechanosensing and mechanotransduction, improved characterization of cellular constitutive behaviour, and microfluidic systems for single-cell studies.


Subject(s)
Biomedical Engineering/instrumentation , Cell Physiological Phenomena , Computer Simulation , Computer-Aided Design , Equipment and Supplies , Models, Biological , Equipment Design
8.
Article in English | MEDLINE | ID: mdl-24449607

ABSTRACT

Ventricular assist devices (VADs) provide mechanical circulatory support to offload the work of one or both ventricles during heart failure. They are used in the clinical setting as destination therapy, as bridge to transplant, or more recently as bridge to recovery to allow for myocardial remodeling. Recent developments in computational simulation allow for detailed assessment of VAD hemodynamics for device design and optimization for both children and adults. Here, we provide a focused review of the recent literature on finite element methods and optimization for VAD simulations. As VAD designs typically fall into two categories, pulsatile and continuous flow devices, we separately address computational challenges of both types of designs, and the interaction with the circulatory system with three representative case studies. In particular, we focus on recent advancements in finite element methodology that have increased the fidelity of VAD simulations. We outline key challenges, which extend to the incorporation of biological response such as thrombosis and hemolysis, as well as shape optimization methods and challenges in computational methodology.


Subject(s)
Computer Simulation , Heart-Assist Devices , Heart Failure/surgery , Heart Transplantation , Heart-Assist Devices/adverse effects , Hemodynamics , Humans , Models, Cardiovascular , Prosthesis Design , Pulsatile Flow , Thrombosis/etiology
9.
Comput Mech ; 54(4): 1055-1071, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25580046

ABSTRACT

We propose a framework that combines variational immersed-boundary and arbitrary Lagrangian-Eulerian (ALE) methods for fluid-structure interaction (FSI) simulation of a bioprosthetic heart valve implanted in an artery that is allowed to deform in the model. We find that the variational immersed-boundary method for FSI remains robust and effective for heart valve analysis when the background fluid mesh undergoes deformations corresponding to the expansion and contraction of the elastic artery. Furthermore, the computations presented in this work show that the arterial wall deformation contributes significantly to the realism of the simulation results, leading to flow rates and valve motions that more closely resemble those observed in practice.

10.
Stroke ; 39(12): 3172-8, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18818402

ABSTRACT

BACKGROUND AND PURPOSE: Cerebral artery aneurysms rupture when wall tension exceeds the strength of the wall tissue. At present, risk-assessment of unruptured aneurysms does not include evaluation of the lesions shape, yet clinical experience suggests that this is of importance. We aimed to develop a computational model for simulation of fluid-structure interaction in cerebral aneurysms based on patient specific lesion geometry, with special emphasis on wall tension. METHODS: An advanced isogeometric fluid-structure analysis model incorporating flexible aneurysm wall based on patient specific computed tomography angiogram images was developed. Variables used in the simulation model were retrieved from a literature review. RESULTS: The simulation results exposed areas of high wall tension and wall displacement located where aneurysms usually rupture. CONCLUSIONS: We suggest that analyzing wall tension and wall displacement in cerebral aneurysms by numeric simulation could be developed into a novel method for individualized prediction of rupture risk.


Subject(s)
Cerebral Arteries/physiopathology , Computer Simulation , Intracranial Aneurysm/physiopathology , Models, Cardiovascular , Aged , Cerebral Arteries/ultrastructure , Female , Hemorheology , Humans , Middle Cerebral Artery/diagnostic imaging , Middle Cerebral Artery/physiopathology , Middle Cerebral Artery/ultrastructure , Radiography , Risk , Rupture, Spontaneous , Shear Strength , Tensile Strength
11.
Comput Methods Appl Mech Eng ; 196(29-30): 2943-2959, 2007 May 15.
Article in English | MEDLINE | ID: mdl-20300489

ABSTRACT

We describe an approach to construct hexahedral solid NURBS (Non-Uniform Rational B-Splines) meshes for patient-specific vascular geometric models from imaging data for use in isogeometric analysis. First, image processing techniques, such as contrast enhancement, filtering, classification, and segmentation, are used to improve the quality of the input imaging data. Then, lumenal surfaces are extracted by isocontouring the preprocessed data, followed by the extraction of vascular skeleton via Voronoi and Delaunay diagrams. Next, the skeleton-based sweeping method is used to construct hexahedral control meshes. Templates are designed for various branching configurations to decompose the geometry into mapped meshable patches. Each patch is then meshed using one-to-one sweeping techniques, and boundary vertices are projected to the lumenal surface. Finally, hexahedral solid NURBS are constructed and used in isogeometric analysis of blood flow. Piecewise linear hexahedral meshes can also be obtained using this approach. Examples of patient-specific arterial models are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...