Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 269(Pt 2): 132152, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723811

ABSTRACT

Carbon nanofibers (CNFs) are very promising materials with application in many fields, such as sensors, filtration systems, and energy storage devices. This study aims to explore the use of eco-friendly biopolymers for CNF production, finding novel, suitable and sustainable precursors and thus prioritising environmentally conscious processes and ecological compatibility. Polymeric nanofibers (PNFs) using cellulose acetate, polylactic acid, and chitosan as precursors were successfully prepared via electrospinning. Rheological testing was performed to determine suitable solution concentrations for the production of PNFs with controlled diameter and appropriate morphology. Their dimensions and structure were found to be significantly influenced by the solution concentration and electrospinning flow rate. Subsequently, the electrospun green nanofibers were subject to stabilisation and carbonisation to convert them into CNFs. Thermal behaviour and chemical/structural changes of the nanofibers during stabilisation were investigated by means of thermogravimetric analysis and Fourier-transform infrared spectroscopy, while the final morphology of the fibers after stabilisation and carbonisation was examined through scanning electron microscopy to determine the optimal stabilisation parameters. The optimal fabrication parameters for cellulose and chitosan-based CNFs with excellent morphology and thermal stability were successfully established, providing valuable insight and methods for the sustainable and environmentally friendly synthesis of these promising materials.


Subject(s)
Carbon , Cellulose , Chitosan , Nanofibers , Polyesters , Nanofibers/chemistry , Nanofibers/ultrastructure , Chitosan/chemistry , Cellulose/chemistry , Polyesters/chemistry , Carbon/chemistry , Green Chemistry Technology/methods , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
3.
Biomed Phys Eng Express ; 9(3)2023 03 10.
Article in English | MEDLINE | ID: mdl-36821850

ABSTRACT

Periodontitis is a highly prevalent infectious disease that causes the progressive destruction of the periodontal supporting tissues. If left untreated, it can lead to tooth loss impairing oral function, aesthetics, and the patient's overall quality of life. Guided and Bone Tissue Regeneration (GTR/BTR) are surgical therapies based on the placement of a membrane that prevents epithelial growth into the defect, allowing the periodontal/bone cells (including stem cells) to regenerate or restore the affected tissues. The success of these therapies is commonly affected by the local bacterial colonization of the membrane area and its fast biodegradation, causing postoperative infections and a premature rupture of the membrane limiting the regeneration process. This study presents the antibacterial and osteogenic differentiation properties of polycaprolactone-gelatin (PCL-G) electrospun membranes modified with ZnO nanoparticles (ZnO-NPs). The membranes´ chemical composition, surface roughness, biodegradation, water wettability, and mechanical properties under simulated physiological conditions, were analyzed by the close relationship with their biological properties. The PCL-G membranes modified with 1, 3, and 6% w/w of ZnO-NPs showed a significant reduction in the planktonic and biofilm formation of four clinically relevant bacteria;A. actinomycetemcomitansserotype b, P. gingivalis,E. coli, andS. epidermidis. Additionally, the membranes presented appropriate mechanical properties and biodegradation rates to be potentially used in clinical treatments. Notably, the membranes modified with the lowest concentration of ZnO-NPs (1% w/w) stimulated the production of osteoblast markers and calcium deposits in human bone marrow-derived mesenchymal stem cells (BM-MSC) and were biocompatible to human osteoblasts cells (hFOB). These results suggest that the PCL-G membranes with 1% w/w of ZnO-NPs are high-potential candidates for GTR/BTR treatments, as they were the most effective in terms of better antibacterial effectiveness at a lower NPs-concentration while creating a favorable cellular microenvironment for bone growth.


Subject(s)
Osteogenesis , Zinc Oxide , Humans , Gelatin/chemistry , Zinc Oxide/pharmacology , Tissue Scaffolds/chemistry , Escherichia coli , Quality of Life , Bone Regeneration , Anti-Bacterial Agents/pharmacology , Cell Differentiation
4.
J Control Release ; 330: 1152-1167, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33197487

ABSTRACT

The central nervous system (CNS) encompasses the brain and spinal cord and is considered the processing center and the most vital part of human body. The central nervous system (CNS) barriers are crucial interfaces between the CNS and the periphery. Among all these biological barriers, the blood-brain barrier (BBB) strongly impede hurdle for drug transport to brain. It is a semi-permeable diffusion barrier against the noxious chemicals and harmful substances present in the blood stream and regulates the nutrients delivery to the brain for its proper functioning. Neurological diseases owing to the existence of the BBB and the blood-spinal cord barrier have been terrible and threatening challenges all over the world and can rarely be directly mediated. In fact, drug delivery to brain remained a challenge in the treatment of neurodegenerative (ND) disorders, for these different approaches have been proposed. Nano-fabricated smart drug delivery systems and implantable drug loaded biomaterials for brain repair are among some of these latest approaches. In current review, modern approaches developed to deal with the challenges associated with transporting drugs to the CNS are included. Recent studies on neural drug discovery and injectable hydrogels provide a potential new treatment option for neurological disorders. Moreover, induced pluripotent stem cells used to model ND diseases are discussed to evaluate drug efficacy. These protocols and recent developments will enable discovery of more effective drug delivery systems for brain.


Subject(s)
Neurodegenerative Diseases , Blood-Brain Barrier , Brain , Central Nervous System , Drug Delivery Systems , Humans , Neurodegenerative Diseases/drug therapy
5.
Chemistry ; 26(61): 13904-13914, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-32452602

ABSTRACT

Here we explore the effect of the nature of organic ligands in rhenium cluster complexes [Re6 Q8 L6 ]4- (where Q=S or Se, and L=benzotriazole, 1,2,3-triazole or 1,2,4-triazole) on the biological properties of the complexes, in particular on the cellular toxicity, cellular internalization and localization. Specifically, the study describes the synthesis and detailed characterization of the structure, luminescence and electrochemical properties of the four new Re6 clusters with 1,2,3- and 1,2,4-triazoles. Biological assays of these complexes are also discussed in addition to those with benzotriazole using cervical cancer (HeLa) and immortalized human fibroblasts (CRL-4025) as model cell lines. Our study demonstrates that the presence of hydrophobic and π-bonding rich units such as the benzene ring in benzotriazole significantly enhances cellular internalization of rhenium clusters. These ligands facilitate binding of the clusters to DNA, which results in increased cytotoxicity of the complexes.


Subject(s)
Coordination Complexes , DNA , Rhenium , Triazoles , Cell Line , Coordination Complexes/chemistry , Coordination Complexes/pharmacokinetics , DNA/chemistry , DNA/metabolism , Fibroblasts , Humans , Ligands , Luminescence , Rhenium/chemistry , Triazoles/chemistry , Triazoles/pharmacokinetics , Water
6.
Biomed Mater ; 15(3): 035001, 2020 03 02.
Article in English | MEDLINE | ID: mdl-31899893

ABSTRACT

Blends of natural and synthetic polymers have recently attracted great attention as scaffolds for tissue engineering applications due to their favorable biological and mechanical properties. Nevertheless, phase-separation of blend components is an important challenge facing the development of electrospun homogeneous fibrillar natural-synthetic polymers scaffolds; phase-separation can produce significant detrimental effects for scaffolds fabricated by electrospinning. In the present study, blends of gelatin (Gel; natural polymer) and polycaprolactone (PCL; synthetic polymer), containing 30 and 45 wt% Gel, were prepared using acetic acid as a 'green' sole solvent to straightforwardly produce appropriate single-step Gel-PCL solutions for electrospinning. Miscibility of Gel and PCL in the scaffolds was assessed and the morphology, chemical composition and structural and solid-state properties of the scaffolds were thoroughly investigated. Results showed that the two polymers proved miscible under the single-step solution process used and that the electrospun scaffolds presented suitable properties for potential skin tissue engineering applications. Viability, metabolic activity and protein expression of human fibroblasts cultured on the Gel-PCL scaffolds were evaluated using LIVE/DEAD (calcein/ethidium homodimer), MTT-Formazan and immunocytochemistry assays, respectively. In vitro results showed that the electrospun Gel-PCL scaffolds enhanced cell viability and proliferation in comparison to PCL scaffolds. Furthermore, scaffolds allowed fibroblasts expression of extracellular matrix proteins, tropoelastin and collagen Type I, in a similar way to positive controls. Results indicated the feasibility of the single-step solution process used herein to obtain homogeneous electrospun Gel-PCL scaffolds with Gel content ≥30 wt% and potential properties to be used as scaffolds for skin tissue engineering applications for wound healing.


Subject(s)
Fibroblasts/drug effects , Gelatin/chemistry , Polyesters/chemistry , Skin/drug effects , Tissue Engineering/instrumentation , Tissue Scaffolds , Cell Survival , Collagen Type I/metabolism , Electric Conductivity , Extracellular Matrix/metabolism , Hot Temperature , Humans , Hydrogen-Ion Concentration , Polymers/chemistry , Skin/metabolism , Solvents/chemistry , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared , Stress, Mechanical , Tensile Strength , Thermogravimetry , Tissue Engineering/methods , Tropoelastin/chemistry , Viscosity , Wound Healing , X-Ray Diffraction
7.
Biomed Mater ; 15(3): 035006, 2020 03 04.
Article in English | MEDLINE | ID: mdl-31995538

ABSTRACT

The bacterial colonization of absorbable membranes used for guided tissue regeneration (GTR), as well as their rapid degradation that can cause their rupture, are considered the major reasons for clinical failure. To address this, composite membranes of polycaprolactone (PCL) and gelatin (Gel) loaded with zinc oxide nanoparticles (ZnO-NPs; 1, 3 and 6 wt% relative to PCL content) were fabricated by electrospinning. To fabricate homogeneous fibrillar membranes, acetic acid was used as a sole common solvent to enhance the miscibility of PCL and Gel in the electrospinning solutions. The effects of ZnO-NPs in the physico-chemical, mechanical and in vitro biological properties of composite membranes were studied. The composite membranes showed adequate mechanical properties to offer a satisfactory clinical manipulation and an excellent conformability to the defect site while their degradation rate seemed to be appropriate to allow successful regeneration of periodontal defects. The presence of ZnO-NPs in the composite membranes significantly decreased the planktonic and the biofilm growth of the Staphylococcus aureus over time. Finally, the viability of human osteoblasts and human gingival fibroblasts exposed to the composite membranes with 1 and 3 wt% of ZnO-NPs indicated that those membranes are not expected to negatively influence the ability of periodontal cells to repopulate the defect site during GTR treatments. The results here obtained suggest that composite membranes of PCL and Gel loaded with ZnO-NPs have the potential to be used as structurally stable GTR membranes with local antibacterial properties intended for enhancing clinical treatments.


Subject(s)
Guided Tissue Regeneration/methods , Metal Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Tissue Engineering/methods , Zinc Oxide/chemistry , Anti-Bacterial Agents/pharmacology , Cell Survival , Fibroblasts/drug effects , Gelatin/chemistry , Gingiva/drug effects , Gingiva/metabolism , Humans , Membranes, Artificial , Microbial Sensitivity Tests , Nanotechnology/methods , Osteoblasts/drug effects , Polyesters/chemistry , Staphylococcus aureus/metabolism , Tensile Strength , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...