Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(14): eadh5543, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38569031

ABSTRACT

Natural gas is the primary fuel used in U.S. residences, yet little is known about its consumption patterns and drivers. We use daily county-level gas consumption data to assess the spatial patterns of the relationships and the sensitivities of gas consumption to outdoor air temperature across U.S. households. We fitted linear-plus-plateau functions to daily gas consumption data in 1000 counties, and derived two key coefficients: the heating temperature threshold (Tcrit) and the gas consumption rate change per 1°C temperature drop (Slope). We identified the main predictors of Tcrit and Slope (like income, employment rate, and building type) using interpretable machine learning models built on census data. Finally, we estimated a potential 2.47 million MtCO2 annual emission reduction in U.S. residences by gas savings due to household insulation improvements and hypothetical behavioral change toward reduced consumption by adopting a 1°C lower Tcrit than the current value.

2.
Front Integr Neurosci ; 17: 1135495, 2023.
Article in English | MEDLINE | ID: mdl-38027460

ABSTRACT

The underpinnings of bipedal gait are reviewed from an evolutionary biology and prognostic health perspective to better understand issues and concerns related to cell phone use during ambulation and under conditions of distraction and interference. We also consider gait-related health issues associated with the fear of or risk of falling and include prognostic dimensions associated with cognitive decline, dementia, and mortality. Data were acquired on 21 healthy young adults without hearing loss, vestibular, balance, otological or neurological dysfunction using a computerized walkway (GAITRite® Walkway System) combined with specialized software algorithms to extract gait parameters. Four experimental conditions and seven temporo-spatial gait parameters were studied: gait velocity, cadence, stride length, ambulatory time, single-support time, double-support time, and step count. Significant main effects were observed for ambulation time, velocity, stride velocity, and double-support time. The greatest impact of distraction and interference occurred during the texting condition, although other significant effects occurred when participants were verbally responding to queries and passively listening to a story. These experimental observations show that relatively simple distraction and interference tasks implemented through the auditory sensory modality can induce significant perturbations in gait while individuals were ambulating and using a cell phone. Herein, emphasis is placed on the use of quantifiable gait parameters in medical, psychological, and audiological examinations to serve as a foundation for identifying and potentially averting gait-related disturbances.

3.
ACS Omega ; 8(2): 1724-1738, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36687055

ABSTRACT

The synthesis and applications of ring-opening metathesis polymerization (ROMP) derived poly(olefins) have emerged as an exciting area of great interest in the field of biomaterials science. The major focus of this mini-review is to present recent advances in the synthesis of functional materials using ROMP-derived poly(olefins) utilized for drug release, sensing, and cellular uptake in the past seven years (2015-2022). This review reveals that materials synthesized by ROMP-derived well-defined functional poly(olefins) stand to be highly promising systems for medical as well as biological studies. Thus, this review may prove to be beneficial for the design and development of new smart and flexible-functionality ROMP-based polymeric materials for various biological applications.

4.
Macromol Rapid Commun ; 44(4): e2200731, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36285613

ABSTRACT

The synthesis and characterization of asymmetric alkoxy- are reported, fluoro-benzothiadiazole (BT) acceptor core derivatized with a series of six different heterocycles (selenophene, thiophene, furan, 5-thiazole, 2-thiazole and 2-oxazole). The effect of the flanked-heterocycles containing different chalcogen atoms of the six homopolymers (HPX) is studied using optical, thermal, electrochemical, and computational analysis. Computational calculations indicate a strong relationship between the most stable conformation for each homopolymer and their bearing heterocycle, thus homopolymers HPSe', HPTp', HPFu', and HPTzC5, adopted the syn-syn and syn-anti conformations due to their noncovalent interactions with shorter distances, while HPTzC2' and HPOx' demonstrate preference for the anti-anti conformation. Optical property studies of the homopolymers reveal a strong red-shift in solution and film upon exchanging the chalcogen atom from Oxygen < Sulfur < Selenium in HPFu, HPTp, and HPSe, respectively. In addition, deeper highest occupied molecular orbital (HOMO) energy levels are observed when the donor-acceptor moieties (HPSe, HPTp, and HPFu) are substituted for the acceptor-acceptor systems such as HPTzC5, HPTzC2, and HPOx. Improved packing and morphology are exhibited for the donor-acceptor homopolymers. Thus, having a flanked heterocycle containing different chalcogen-atoms in polymeric systems is one way of tuning the physicochemical properties of conjugated materials for optoelectronic applications.


Subject(s)
Chalcogens , Thiadiazoles , Chalcogens/chemistry , Oxygen/chemistry
5.
ACS Appl Mater Interfaces ; 13(34): 41094-41101, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34410686

ABSTRACT

Novel methods to synthesize electron-deficient π-conjugated polymers utilizing transition-metal-free coupling reactions for the use of nonfunctionalized monomers are attractive due to their improved atom economy and environmental prospective. Herein we describe the use of iPrMgCl·LiCl complex to afford thiazole-based conjugated polymers in the absence of any transition metal catalyst, that enables access to well-defined polymers with good molecular weights. The mechanistically distinct polymerizations proceeded via nucleophilic aromatic substitution (SNAr) reaction supported by density functional theory (DFT) calculations. This work demonstrates the first example of fully conjugated thiazole-based aromatic homopolymers without the need of any transition metal catalyst.

6.
Sci Rep ; 10(1): 19519, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33177560

ABSTRACT

There a few reports of rhodamine-based fluorescent sensors for selective detection of only Al3+, due to the challenge of identifying a suitable ligand for binding Al3+ ion. The use of fluorophore moieties appended to a polymer backbone for sensing applications is far from mature. Here, we report a new fluorescent probe/monomer 4 and its ROMP derived polymer P for specific detection of Al3+ ions. Both monomer 4 and its polymer P exhibit high selectivity toward only Al3+ with no interference from other metal ions, having a limit detection of 0.5 and 2.1 µM, respectively. The reversible recognition of monomer 4 and P for Al3+ was also proved in presence of Na2EDTA by both UV-Vis and fluorometric titration. The experimental data indicates the behavior of 4 and P toward Al3+ is pH independent in medium conditions. In addition, the switch-on luminescence response of 4 at acidic pH (0 < 5.0), allowed us to specifically stain lysosomes (pH ~ 4.5-5.0) in live cells.


Subject(s)
Aluminum/analysis , Fluorescent Dyes/chemistry , Lysosomes/chemistry , Molecular Probe Techniques , Rhodamines/chemistry , Fluorescent Dyes/chemical synthesis , HEK293 Cells , HeLa Cells , Humans , Hydrogen-Ion Concentration , Limit of Detection , MCF-7 Cells , Molecular Imaging/methods , Molecular Probes/chemical synthesis , Molecular Probes/chemistry , Polymerization , Polymers/chemical synthesis , Polymers/chemistry , Spectrophotometry, Ultraviolet , Thermogravimetry
7.
Macromol Rapid Commun ; 41(17): e2000382, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32803838

ABSTRACT

Functionalization of polyolefins, in particular polyisobutylene, remains a relatively unexplored application for the Michael reaction. This work evaluates the potential of polyisobutylene acrylate (PIBA) chain-end modification via organocatalyzed thiol-Michael and aza-Michael additions. A series of chain-end functional polyisobutylene oligomers are prepared using "click" reactions of thiols or amines to PIBA in the presence of 0.02 equivalents of organocatalyst. Reaction kinetics and chain-end transformations are monitored using NMR spectroscopy and the macromolecular products are characterized by size exclusion chromatography. Further potential of this synthetic strategy is illustrated by thiol-Michael addition of thiols formed in situ via nucleophilic thiolactone ring opening. The obtained results provide an efficient method for the preparation of functional polyisobutylene oligomers that can be utilized in a broad range of potential applications.


Subject(s)
Polymers , Sulfhydryl Compounds , Amines , Polyenes
8.
ACS Appl Mater Interfaces ; 11(37): 34376-34384, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31490644

ABSTRACT

Carbon monoxide (CO) is an important biological gasotransmitter in living cells. Precise spatial and temporal control over release of CO is a major requirement for clinical application. To date, the most reported carbon monoxide releasing materials use expensive fabrication methods and require harmful and poorly designed tissue-penetrating UV irradiation to initiate the CO release precisely at infected sites. Herein, we report the first example of utilizing a green light-responsive CO-releasing polymer P synthesized via ring-opening metathesis polymerization. Both monomer M and polymer P were very stable under dark conditions and CO release was effectively triggered using minimal power and low energy wavelength irradiation (550 nm, ≤28 mW). Time-dependent density functional theory (TD-DFT) calculations were carried out to simulate the electronic transition and insight into the nature of the excitations for both L and M. TD-DFT calculations indicate that the absorption peak of M is mainly due to the excitation of the seventh singlet excited state, S7. Furthermore, stretchable materials using polytetrafluoroethylene (PTFE) strips based on P were fabricated to afford P-PTFE, which can be used as a simple, inexpensive, and portable CO storage bandage. Insignificant cytotoxicity as well as cell permeability was found for M and P against human embryonic kidney cells.

9.
Bioorg Chem ; 87: 366-372, 2019 06.
Article in English | MEDLINE | ID: mdl-30913468

ABSTRACT

TPEN is an amino chelator of transition metals that is effective at the cellular and whole organism levels. Although TPEN of often used as a selective zinc chelators, it has affinity for copper and iron and has been shown to chelate both biologically. We have previously shown that TPEN selectively kills colon cancer cells based on its ability to chelate copper, which is highly enriched in colon cancer cells. The TPEN-copper complex is redox active thus allowing for increased ROS production in cancer cells and as such cellular toxicity. Here we generate TPEN derivatives with the goal of increasing its selectivity for copper while minimizing zinc chelation to reduce potential side effects. We show that one of these derivatives, TPEEN despite the fact that it exhibits reduced affinity for transition metals, is effective at inducing cell death in breast cancer cells, and exhibits less toxicity to normal breast cells. The toxicity effect of the both chelators coupled to the metal content of the different cell types reveals that they exhibit their toxicity through chelating redox active metals (iron and copper). As such TPEEN is an important novel chelators that can be exploited in anti-cancer therapies.


Subject(s)
Antineoplastic Agents/pharmacology , Copper/pharmacology , Ethylenediamines/pharmacology , Organometallic Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Death/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Copper/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Ethylenediamines/chemistry , Humans , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
10.
Sensors (Basel) ; 19(4)2019 Feb 16.
Article in English | MEDLINE | ID: mdl-30781451

ABSTRACT

The objective of this paper is to present an analysis of Sentinel-1 derived surface soil moisture maps (S1-SSM) produced with high spatial resolution (at plot scale) and a revisit time of six days for the Occitanie region located in the South of France as a function of precipitation data, in order to investigate the potential of S1-SSM maps for detecting heavy rainfalls. First, the correlation between S1-SSM maps and rainfall maps provided by the Global Precipitation Mission (GPM) was investigated. Then, we analyzed the effect of the S1-SSM temporal resolution on detecting heavy rainfall events and the impact of these events on S1-SSM values as a function of the number of days that separated the heavy rainfall and the S1 acquisition date (cumulative rainfall more than 60 mm in 24 hours or 80 mm in 48 hours). The results showed that the six-day temporal resolution of the S1-SSM map doesn't always permit the detection of an extreme rainfall event, because confusion will appear between high S1-SSM values due to extreme rainfall events occurring six days before the acquisition of S1-SSM, and high S1-SSM values due to light rain a few hours before the acquisition of Sentinel-1 images. Moreover, the monitoring of extreme rain events using only soil moisture maps remains difficult, since many environmental parameters could affect the value of SSM, and synthetic aperture radar (SAR) doesn't allow the estimation of very high soil moistures (higher than 35 vol.%).

11.
ChemSusChem ; 12(2): 416-419, 2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30548209

ABSTRACT

Low-viscosity poly(α-olefin)s (PAOs) either alone or with functional hydrocarbon oligomer cosolvents are nontoxic, nonvolatile, recyclable solvent systems that effectively and efficiently sequester trace amounts of nonpolar organic compounds such as benzene and halogenated organics from water. More polar compounds including perfluorooctanoic acid and nitrobenzene or water-miscible compounds such as THF and triethylamine can also be sequestered if the PAO phase contains an H-bonding PAO-anchored cosolvent.

12.
J Org Chem ; 83(17): 9774-9786, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30124296

ABSTRACT

Sequence-defined polymers with customizable sequences, monodispersity, substantial length, and large chemical diversity are of great interest to mimic the efficiency and selectivity of biopolymers. We report an efficient, facile, and scalable synthetic route to introduce many chemical functionalities, such as amino acids and sugars in nucleic acids and sequence-controlled oligophosphodiesters. Through achiral tertiary amine molecules that are perfectly compatible with automated DNA synthesis, readily available amines or azides can be turned into phosphoramidites in two steps only. Individual attachment yields on nucleic acids and artificial oligophosphodiesters using automated solid-phase synthesis (SPS) were >90% in almost all cases. Using this method, multiple water-soluble sequence-defined oligomers bearing a range of functional groups in precise sequences could be synthesized and purified in high yields. The method described herein significantly expands the library of available functionalities for nucleic acids and sequence-controlled polymers.

13.
Nat Chem ; 10(2): 184-192, 2018 02.
Article in English | MEDLINE | ID: mdl-29359762

ABSTRACT

As colloidal self-assembly increasingly approaches the complexity of natural systems, an ongoing challenge is to generate non-centrosymmetric structures. For example, patchy, Janus or living crystallization particles have significantly advanced the area of polymer assembly. It has remained difficult, however, to devise polymer particles that associate in a directional manner, with controlled valency and recognition motifs. Here, we present a method to transfer DNA patterns from a DNA cage to a polymeric nanoparticle encapsulated inside the cage in three dimensions. The resulting DNA-imprinted particles (DIPs), which are 'moulded' on the inside of the DNA cage, consist of a monodisperse crosslinked polymer core with a predetermined pattern of different DNA strands covalently 'printed' on their exterior, and further assemble with programmability and directionality. The number, orientation and sequence of DNA strands grafted onto the polymeric core can be controlled during the process, and the strands are addressable independently of each other.


Subject(s)
DNA/chemistry , Molecular Imprinting , Nanoparticles/chemistry , Polymers/chemistry , Molecular Structure , Particle Size
14.
Beilstein J Org Chem ; 13: 2486-2501, 2017.
Article in English | MEDLINE | ID: mdl-29234476

ABSTRACT

The title molecules are sought in connection with various synthetic applications. The aliphatic fluorous alcohols Rfn CH2OH (Rfn = CF3(CF2) n-1; n = 11, 13, 15) are converted to the triflates Rfn CH2OTf (Tf2O, pyridine; 22-61%) and then to Rfn CH2I (NaI, acetone; 58-69%). Subsequent reactions with NaOCl/HCl give iodine(III) dichlorides Rfn CH2ICl2 (n = 11, 13; 33-81%), which slowly evolve Cl2. The ethereal fluorous alcohols CF3CF2CF2O(CF(CF3)CF2O) x CF(CF3)CH2OH (x = 2-5) are similarly converted to triflates and then to iodides, but efforts to generate the corresponding dichlorides fail. Substrates lacking a methylene group, Rfn I, are also inert, but additions of TMSCl to bis(trifluoroacetates) Rfn I(OCOCF3)2 appear to generate Rfn ICl2, which rapidly evolve Cl2. The aromatic fluorous iodides 1,3-Rf6C6H4I, 1,4-Rf6C6H4I, and 1,3-Rf10C6H4I are prepared from the corresponding diiodides, copper, and Rfn I (110-130 °C, 50-60%), and afford quite stable Rfn C6H4ICl2 species upon reaction with NaOCl/HCl (80-89%). Iodinations of 1,3-(Rf6)2C6H4 and 1,3-(Rf8CH2CH2)2C6H4 (NIS or I2/H5IO6) give 1,3,5-(Rf6)2C6H3I and 1,2,4-(Rf8CH2CH2)2C6H3I (77-93%). The former, the crystal structure of which is determined, reacts with Cl2 to give a 75:25 ArICl2/ArI mixture, but partial Cl2 evolution occurs upon work-up. The latter gives the easily isolated dichloride 1,2,4-(Rf8CH2CH2)2C6H3ICl2 (89%). The relative thermodynamic ease of dichlorination of these and other iodine(I) compounds is probed by DFT calculations.

15.
Macromol Rapid Commun ; 38(15)2017 Aug.
Article in English | MEDLINE | ID: mdl-28627077

ABSTRACT

This paper reports the efficient synthesis of the first class of polyisobutylene(PIB)-supported palladium-PEPPSI precatalyst (PEPPSI = pyridine-enhanced precatalyst preparation, stabilization, and initiation). The new complexes are employed in Buchwald-Hartwig amination of aryl chlorides and are found to be reasonably active in the titled cross-coupling reaction. The supported catalysts are tested in polar (1,4-dioxane and 1,2-dimethoxyethane) as well as in aliphatic reaction media (toluene and n-heptane) and display superior activity in the highly lipophilic solvent (n-heptane). The catalytic efficacy of PIB-Pd-PEPPSI precatalyst is measured to be comparable to its nonsupported analog. Pd-leaching is determined by inductively coupled plasma mass spectrometry (ICP-MS) after a simple liquid/liquid extraction and is found to be 2 ppb in the product phase, translating into a recovery of ≈99.8% of the palladium.


Subject(s)
Palladium/chemistry , Polyenes/chemistry , Polymers/chemistry , Amination , Catalysis , Dioxanes/chemistry , Ethyl Ethers/chemistry
16.
Org Biomol Chem ; 14(42): 10058-10069, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27722453

ABSTRACT

The fluorous alkenes H2C[double bond, length as m-dash]CHRfn (Rfn = (CF2)n-1CF3; n = 8, 10) undergo the Mizoroki-Heck reaction with a variety of aromatic monobromides and polybromides such as 1,3- and 1,4-C6H4Br2, 1,3,5-C6H3Br3, 1,3,5-C6H3Br2Cl, 1,4-XC6H4Br (X = CF3, Rf8, COCH3, CN, 1,4-OC6H4Br), 1,2-O2NC6H4Br, 5-bromoisoquinoline, 5-bromopyrimidine, 3-bromo-5-methoxypyridine, and 3,5-dibromopyridine (sixteen examples, 78% average isolated yield). Typically, 1.2-2.4 equiv. of alkene are employed per Ar-Br bond, together with Pd(OAc)2 catalyst (4-5 mol%/Ar-Br bond), n-Bu4N+ Br- (0.8-1.0 equiv./Ar-Br bond), NaOAc (1.2-2.4 equiv./Ar-Br bond), and 3 : 1 w/w DMF/THF as solvent (120 °C). No effort is necessary to exclude air or moisture, and reactions may be conducted on >10 g scales. Only E isomers of the products Ar(CH[double bond, length as m-dash]CHRfn)m are detected. Thirteen representative examples are hydrogenated (Pd/C, balloon pressure H2), giving Ar(CH2CH2Rfn)m (92% average isolated yield).

17.
Chem Commun (Camb) ; 52(72): 10914-7, 2016 Sep 18.
Article in English | MEDLINE | ID: mdl-27533528

ABSTRACT

We report a micelle-templated method to enhance the reactivity of DNA with highly hydrophobic molecules. Lipids, chromophores and polymers can be conjugated to DNA in high yield and under mild conditions. This method expands the range of DNA-templated reactions for DNA-encoded libraries, oligonucleotide and drug delivery, nanopore mimetics and DNA nanotechnology.


Subject(s)
DNA/chemistry , Micelles , Nanotechnology , DNA/chemical synthesis , DNA/metabolism , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Hydrophobic and Hydrophilic Interactions , Lipids/chemistry , Nanopores , Oligonucleotides/chemical synthesis , Oligonucleotides/chemistry , Polymers/chemistry , Succinimides/chemistry
18.
ACS Appl Mater Interfaces ; 8(21): 13637-45, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27163783

ABSTRACT

A major challenge in lubrication technology is to enhance lubricant performance at extreme temperatures that exceed conventional engine oil thermal degradation limits. Soft noble metals such as silver have low reactivity and shear strength, which make them ideal solid lubricants for wear protection and friction reduction between contacting surfaces at high temperatures. However, achieving adequate dispersion in engine lubricants and metallic silver deposition over predetermined temperatures ranges presents a significant chemical challenge. Here we report the synthesis, characterization, and tribological implementation of the trimeric silver pyrazolate complex, [Ag(3,5-dimethyl-4-n-hexyl-pyrazolate)]3 (1). This complex is oil-soluble and undergoes clean thermolysis at ∼310 °C to deposit lubricious, protective metallic silver particles on metal/metal oxide surfaces. Temperature-controlled tribometer tests show that greater than 1 wt % loading of 1 reduces wear by 60% in PAO4, a poly-α-olefin lubricant base fluid, and by 70% in a commercial fully formulated 15W40 motor oil (FF oil). This silver-organic complex also imparts sufficient friction reduction so that the tribological transition from oil as the primary lubricant through its thermal degradation, to 1 as the primary lubricant, is experimentally undetectable.

19.
Nanoscale ; 8(19): 10453, 2016 May 21.
Article in English | MEDLINE | ID: mdl-27126130

ABSTRACT

Correction for 'Antisense precision polymer micelles require less poly(ethylenimine) for efficient gene knockdown' by Johans J. Fakhoury, et al., Nanoscale, 2015, 7, 20625-20634.

20.
Chem Sci ; 7(2): 1093-1099, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-29896373

ABSTRACT

We report the first soluble poly(3-dodecyl tellurophenylene-vinylene) polymer (P3TeV) by Stille copolymerization and compare its properties to the analogous thiophene and selenophene containing polymers. The optical band gap of the polymers is shown to systematically decrease as the size of the heteroatom is increased, mainly as a result of a stabilization of the LUMO energy, resulting in a small band gap of 1.4 eV for P3TeV. Field effect transistors measurements in variety of architectures demonstrate that the selenophene polymer exhibits the highest mobility, highlighting that increasing the size of the heteroatom is not always beneficial for charge transport.

SELECTION OF CITATIONS
SEARCH DETAIL
...