Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36678970

ABSTRACT

The Orchidaceae family accounts for about 28,000 species, and most of them are mentioned in the folk medicine of nations around the world. The use of terrestrial orchids in European and Mediterranean regions has been reported since ancient times, but little information is available on their medicinal properties, as well as on their phytochemicals and biological activities. However, plant collection for human use is still listed as one of the main threats for terrestrial orchids, alongside other menacing factors such as wrong habitat management and disturbance to symbionts, such as pollinators and mycorrhizal fungi. Therefore, the primary aim of this review was to resume and discuss available information regarding the past and current popular uses of European orchids. We then grouped phytochemical data to evaluate the presence of bioactive compounds of pharmacological relevance, and we discussed whether these could support the therapeutic employment of the different organs. Finally, we briefly debated the sustainability of orchid utilizations, considering the different threatening factors and conservation actions including plant propagation methods.

2.
Molecules ; 27(13)2022 07 02.
Article in English | MEDLINE | ID: mdl-35807516

ABSTRACT

Peucedanum ostruthium (L.) W. D. J. Koch (Apiaceae) is a worldwide perennial herb native to the mountains of central Southern Europe. The rhizome has a long tradition in popular medicine, while ethnobotanical surveys have revealed local uses of leaves for superficial injuries. To experimentally validate these uses, plant material was collected in the Gran Paradiso National Park, Aosta Valley, Italy, and the rhizome and leaves were micromorphologically and phytochemically characterized. Polyphenol-enriched hydroalcoholic rhizome and leaf extracts, used in cell-free assays, showed strong and concentration-dependent antioxidant and anti-inflammatory activities. In vitro tests revealed cyclooxygenase and lipoxygenase inhibition by the leaf extract, while the rhizome extract induced only lipoxygenase inhibition. MTT assays on HaCaT keratinocytes and L929 fibroblasts showed low cytotoxicity of extracts. In vitro scratch wound test on HaCaT resulted in a strong induction of wound closure with the leaf extract, while the effect of the rhizome extract was lower. The same test on L929 cells showed similar wound closure induction with both extracts. The results confirmed the traditional medicinal uses of the rhizome as an anti-inflammatory and wound healing remedy for superficial injuries but also highlighted that the leaves can be exploited for these purposes with equal or superior effectiveness.


Subject(s)
Apiaceae , Plants, Medicinal , Anti-Inflammatory Agents/analysis , Anti-Inflammatory Agents/pharmacology , Lipoxygenases , Plant Extracts/analysis , Plant Extracts/pharmacology , Plant Leaves , Plants, Medicinal/chemistry , Rhizome/chemistry , Wound Healing
3.
J Integr Med ; 19(6): 526-536, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34538643

ABSTRACT

OBJECTIVE: Carpobrotus edulis (L.) N.E.Br. is a succulent perennial plant native to South Africa and grows invasively in the Mediterranean basin. It is commonly used for the treatment of various diseases, including skin wound healing and regeneration, for which experimental validation is lacking. We therefore evaluated the skin healing properties by testing a C. edulis aqueous leaf extract (CAE) on cell cultures and in enzymatic assays. METHODS: Micro-morphological analysis of leaves was carried out using scanning electron microscopy and light microscopy. Phytochemical features and antioxidant activity of CAE were evaluated by reversed-phase liquid chromatography coupled with diode array detection and electrospray ion trap mass spectrometry (RP-LC-DAD-ESI-MS), and in vitro cell-free assays. Biological activities were evaluated using keratinocytes and fibroblasts, as well as elastase, collagenase, and hyaluronidase. RESULTS: CAE showed high carbohydrates (28.59% ± 0.68%), total phenols ([101.9 ± 6.0] g gallic acid equivalents/kg dry extract [DE]), and flavonoids ([545.9 ± 26.0] g rutin equivalents/kg DE). RP-LC-DAD-ESI-MS revealed the predominant presence of hydroxycinnamic acids (51.96%), followed by tannins (14.82%) and flavonols (11.32%). The extract was not cytotoxic, had a strong and dose-dependent antioxidant activity, and inhibited collagenase (> 90% at 500 µg/mL) and hyaluronidase (100% at 1000 µg/mL). In cell culture experiments, CAE increased wound closure and collagen production, which was consistent with its high polyphenol content. CONCLUSION: Our data support the use of the C. edulis for skin care and the treatment of skin problems. Moreover, use of C. edulis for skin care purposes could be an eco-friendly solution to reduce its invasiveness in the environment.


Subject(s)
Aizoaceae , Plant Extracts , Antioxidants/pharmacology , Flavonoids , Medicine, Traditional , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Polyphenols
4.
Plants (Basel) ; 10(8)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34451762

ABSTRACT

A detailed chemical composition of Dendrobium essential oil has been only reported for a few main species. This article is the first to evaluate the essential oil composition, obtained by steam distillation, of five Indian Dendrobium species: Dendrobium chrysotoxum Lindl., Dendrobium harveyanum Rchb.f., and Dendrobium wardianum R.Warner (section Dendrobium), Dendrobium amabile (Lour.) O'Brien, and Dendrobium chrysanthum Wall. ex Lindl. (section Densiflora). We investigate fresh flower essential oil obtained by steam distillation, by GC/FID and GC/MS. Several compounds are identified, with a peculiar distribution in the species: Saturated hydrocarbons (range 2.19-80.20%), organic acids (range 0.45-46.80%), esters (range 1.03-49.33%), and alcohols (range 0.12-22.81%). Organic acids are detected in higher concentrations in D. chrysantum, D. wardianum, and D. harveyanum (46.80%, 26.89%, and 7.84%, respectively). This class is represented by palmitic acid (13.52%, 5.76, and 7.52%) linoleic acid (D. wardianum 17.54%), and (Z)-11-hexadecenoic acid (D. chrysantum 29.22%). Esters are detected especially in species from section Dendrobium, with ethyl linolenate, methyl linoleate, ethyl oleate, and ethyl palmitate as the most abundant compounds. Alcohols are present in higher concentrations in D. chrysantum (2.4-di-tert-butylphenol, 22.81%), D. chrysotoxum (1-octanol, and 2-phenylethanol, 2.80% and 2.36%), and D. wardianum (2-phenylethanol, 4.65%). Coumarin (95.59%) is the dominant compound in D. amabile (section Densiflora) and detected in lower concentrations (range 0.19-0.54%) in other samples. These volatile compounds may represent a particular feature of these plant species, playing a critical role in interacting with pollinators.

5.
PeerJ ; 8: e9150, 2020.
Article in English | MEDLINE | ID: mdl-32461836

ABSTRACT

Melanin is the main pigment of human skin, playing the primary role of protection from ultraviolet radiation. Alteration of the melanin production may lead to hyperpigmentation diseases, with both aesthetic and health consequences. Thus, suppressors of melanogenesis are considered useful tools for medical and cosmetic treatments. A great interest is focused on natural sources, aimed at finding safe and quantitatively available depigmenting substances. Lichens are thought to be possible sources of this kind of compounds, as the occurrence of many phenolic molecules suggests possible effects on phenolase enzymes involved in melanin synthesis, like tyrosinase. In this work, we used four lichen species, Cetraria islandica Ach., Flavoparmelia caperata Hale, Letharia vulpina (L.) Hue, and Parmotrema perlatum (Hudson) M. Choisy, to obtain extracts in solvents of increasing polarity, viz. chloroform, chloroform-methanol, methanol, and water. Cell-free, tyrosinase inhibition experiments showed highest inhibition for L. vulpina methanol extract, followed by C. islandica chloroform-methanol one. Comparable results for depigmenting activities were observed by means of in vitro and in vivo systems, such as MeWo melanoma cells and zebrafish larvae. Our study provides first evidence of depigmenting effects of lichen extracts, from tyrosinase inhibition to cell and in vivo models, suggesting that L. vulpina and C. islandica extracts deserve to be further studied for developing skin-whitening products.

6.
Molecules ; 25(8)2020 Apr 19.
Article in English | MEDLINE | ID: mdl-32325864

ABSTRACT

BACKGROUND: Fruit peels are generally underutilized byproducts of the food industry, although they are valuable sources of bioactive compounds. The aim of this study is to evaluate a new application for three Citrus peel EOs as bio-herbicides. METHODS: After a micro-morphological evaluation of Citrus peels by SEM analysis, the phytochemical composition of the EOs of Citrus × bergamia Risso & Poit., Citrus × myrtifolia Raf., and Citrus limon (L.) Osbeck was characterized by GC/FID and GC/MS analyses. The in vitro phytotoxicity against germination and initial radical elongation of several crop and weed species was evaluated. Furthermore, the eco-compatibility of these EOs has been assessed by the brine shrimp (Artemia salina) lethality assay. RESULTS: SEM analysis highlighted the morphometric differences of the schizolysigenous pockets among the peels of the three Citrus species. Oxygenated monoterpenes are the main constituents in C. × bergamia (51.09%), whereas monoterpene hydrocarbons represent the most abundant compounds in C. × myrtifolia (82.15%) and C. limon (80.33%) EOs. They showed marked and selective phytotoxic activity in vitro, often at very low concentration (0.1 µg/mL) against all plant species investigated, without showing any toxicity on Artemia salina, opening the perspective of their use as safe bio-herbicides.


Subject(s)
Citrus/chemistry , Fruit/chemistry , Monoterpenes/analysis , Oils, Volatile/analysis , Plant Oils/analysis , Seeds/drug effects , Animals , Artemia/drug effects , Gas Chromatography-Mass Spectrometry , Microscopy, Electron, Scanning , Monoterpenes/chemistry , Monoterpenes/toxicity , Oils, Volatile/chemistry , Oils, Volatile/toxicity , Plant Oils/chemistry , Plant Oils/toxicity
7.
Plants (Basel) ; 8(11)2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31739534

ABSTRACT

Himantoglossum robertianum (Loisel.) P. Delforge is a Mediterranean orchid whose propagation in vitro has been achieved, making it eligible as a source of bioactive substances. Flowers were analyzed by light and SEM microscopy and used to obtain a polyphenol-rich, hydroalcoholic flower extract (HFE). HFE was characterized for total phenols, flavonoids and proanthocyanidins, and for polyphenol profile by RP-LC-DAD. Antioxidant assays, in vitro collagenase and elastase inhibition, and MTT and cell motility assays on HaCaT keratinocytes were done. Microscopy showed epidermal cells containing anthocyanins in the flower labellum. Flavonoids (flavones and flavan-3-ols) represented the most abundant compounds (42.91%), followed by scopoletin (33.79%), and phenolic acids (23.3%). Antioxidant assays showed strong activities, rating ORAC > FRAP > TEAC > ß-carotene bleaching > DPPH > iron-chelation. Biological assays showed elastase and collagenase inhibition (up to 42% and 78%, respectively), improvement of HaCaT cell viability after treatment with 500 µM H2O2 (from 30% to 84% of control), and stimulation of cell migration rate up to 210% of control. In summary, HFE counteracted different free radicals, while protective properties were shown by cell-free and cell-based bioassays, suggesting the possible use of H. robertianum flowers for skin-preserving, repair, and anti-aging applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...