Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Biol Educ ; 16(2): 237-46, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26753032

ABSTRACT

Synthetic biology offers an ideal opportunity to promote undergraduate laboratory courses with research-style projects, immersing students in an inquiry-based program that enhances the experience of the scientific process. We designed a semester-long, project-based laboratory curriculum using synthetic biology principles to develop a novel sensory device. Students develop subject matter knowledge of molecular genetics and practical skills relevant to molecular biology, recombinant DNA techniques, and information literacy. During the spring semesters of 2014 and 2015, the Synthetic Biology Laboratory Project was delivered to sophomore genetics courses. Using a cloning strategy based on standardized BioBrick genetic "parts," students construct a "reporter plasmid" expressing a reporter gene (GFP) controlled by a hybrid promoter regulated by the lac-repressor protein (lacI). In combination with a "sensor plasmid," the production of the reporter phenotype is inhibited in the presence of a target environmental agent, arabinose. When arabinose is absent, constitutive GFP expression makes cells glow green. But the presence of arabinose activates a second promoter (pBAD) to produce a lac-repressor protein that will inhibit GFP production. Student learning was assessed relative to five learning objectives, using a student survey administered at the beginning (pre-survey) and end (post-survey) of the course, and an additional 15 open-ended questions from five graded Progress Report assignments collected throughout the course. Students demonstrated significant learning gains (p < 0.05) for all learning outcomes. Ninety percent of students indicated that the Synthetic Biology Laboratory Project enhanced their understanding of molecular genetics. The laboratory project is highly adaptable for both introductory and advanced courses.

2.
CBE Life Sci Educ ; 13(1): 111-30, 2014.
Article in English | MEDLINE | ID: mdl-24591510

ABSTRACT

There is widespread agreement that science, technology, engineering, and mathematics programs should provide undergraduates with research experience. Practical issues and limited resources, however, make this a challenge. We have developed a bioinformatics project that provides a course-based research experience for students at a diverse group of schools and offers the opportunity to tailor this experience to local curriculum and institution-specific student needs. We assessed both attitude and knowledge gains, looking for insights into how students respond given this wide range of curricular and institutional variables. While different approaches all appear to result in learning gains, we find that a significant investment of course time is required to enable students to show gains commensurate to a summer research experience. An alumni survey revealed that time spent on a research project is also a significant factor in the value former students assign to the experience one or more years later. We conclude: 1) implementation of a bioinformatics project within the biology curriculum provides a mechanism for successfully engaging large numbers of students in undergraduate research; 2) benefits to students are achievable at a wide variety of academic institutions; and 3) successful implementation of course-based research experiences requires significant investment of instructional time for students to gain full benefit.


Subject(s)
Biology/education , Curriculum , Research/education , Attitude , Cooperative Behavior , Data Collection , Faculty , Genome , Genomics/education , Humans , Knowledge , Learning , Molecular Sequence Annotation , Program Evaluation , Research Personnel , Self Report , Surveys and Questionnaires , Time Factors
3.
Mycologia ; 103(1): 36-44, 2011.
Article in English | MEDLINE | ID: mdl-20943555

ABSTRACT

The three genera traditionally classified as Pilobolaceae have been identified on the basis of morphological characteristics. In the absence of distinctive morphological differences phylogenetic techniques have proven to be superior for developing phylogenies. Molecular techniques have been used primarily for studies of higher fungi; there are few investigations of the Zygomycota using genetic sequences for classification. DNA sequences coding for three regions of rRNA were used to investigate phylogenetic relationships of the three genera traditionally considered within the Pilobolaceae. Evidence indicates that Pilaira should be removed from Pilobolaceae and the family redescribed. Sporangiospore size is the morphological characteristic that most closely correlates with rDNA clades of phylogenetic trees. This study demonstrates that traditional morphological characteristics alone are not adequate to differentiate species of Pilobolus.


Subject(s)
Fungi/genetics , Base Sequence , DNA, Fungal/chemistry , DNA, Fungal/genetics , Fungi/classification , Fungi/ultrastructure , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , RNA, Ribosomal, 18S/chemistry , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 23S/genetics , RNA, Ribosomal, 5.8S/chemistry , RNA, Ribosomal, 5.8S/genetics , Sequence Alignment
4.
Methods Mol Biol ; 419: 69-91, 2008.
Article in English | MEDLINE | ID: mdl-18369976

ABSTRACT

Many elegant methodologies have been devised to explore RNA-protein as well as RNA-RNA interactions. Although the characterization of messages targeted by a specific RNA-binding protein (RBP) has been accelerated by the application of microarray technologies, reliable methods to describe the endogenous assembly of ribonucleoproteins (RNPs) are needed. However, this approach requires the targeted purification of a select mRNA under conditions favorable for the copurification of associated factors including RNA and protein components of the RNP. This chapter describes previous methods used to characterize RNPs in the context of in vitro approaches and presents the Ribotrap methodology, an in vivo protocol for message-specific purification of a target RNP. The method was developed in a yeast model system, yet is amenable to other in vivo cell systems including mammalian cell culture.


Subject(s)
Immunoprecipitation/methods , Ribonucleoproteins/isolation & purification , 3' Untranslated Regions , Affinity Labels , Base Sequence , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Genes, Reporter , Molecular Biology/methods , RNA/genetics , RNA/isolation & purification , RNA/metabolism , RNA Processing, Post-Transcriptional , RNA, Fungal/genetics , RNA, Fungal/isolation & purification , RNA, Fungal/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/isolation & purification , RNA-Binding Proteins/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/isolation & purification , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...