Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 21(3): 1966-1970, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33404477

ABSTRACT

Use of thinner oxides to improve the operating speed of a complementary metal-oxidesemiconductor (CMOS) device causes serious gate leakage problems. Leakage current of the dielectric analysis method has I-V, C-V, and charge pumping, but the procedure is very complicated. In this premier work, we analyzed the leakage current of metal insulator semiconductor (MIS) capacitors with different initiators through low-frequency noise (LFN) measurement with simplicity and high sensitivity. The LFN measurement results show a correlation between power spectral density (SIG) and gate leakage current (IG). MIS capacitors of hafnium zirconium silicate (HZS, (HfZrO4)1-x (SiO2)x) were used for the experiments with varying SiO2 ratio (x = 0, 0.1, 0.2) of hafnium zirconium oxide (HZO, HfZrO4). As the SiO2 ratio increased, the leakage current decreased according to J-V measurement. Further, the C-V measurement confirmed that the oxide-trapped charge (Not) increased with increasing SiO2 ratio. Finally, the LFN measurement method revealed that the cause of leakage current reduction was trap density reduction of the insulator.

2.
J Nanosci Nanotechnol ; 14(5): 3561-3, 2014 May.
Article in English | MEDLINE | ID: mdl-24734588

ABSTRACT

Current-Voltage (I-V) and Capacitance-Voltage (C-V) characteristics of crystalline silicon solar cells were obtained under UV exposure. The solar cell parameters degraded with increasing exposure time. For example, open-circuit voltage (V(oc)), short-circuit current (J(sc)), fill-factor (FF) and efficiency (eta) were degraded. In this study, solar cell did not degrade at the p-n junction or silicon substrate effective lifetime by UltraViolet (UV) light exposure. The main degradation occurred at the SiN(x) layer, the commonly used anti-reflection coating (ARC), due to the positive charges generated by the high-energy UV light source. UV light changed the characteristics of the SiN(x) layer and the Si/SiN(x) interface to degrade the cell efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...