Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Biomed Mater Res A ; 112(4): 549-561, 2024 04.
Article in English | MEDLINE | ID: mdl-37326361

ABSTRACT

There is a significant clinical need to develop effective vascularization strategies for tissue engineering and the treatment of ischemic pathologies. In patients afflicted with critical limb ischemia, comorbidities may limit common revascularization strategies. Cell-encapsulating modular microbeads possess a variety of advantageous properties, including the ability to support prevascularization in vitro while retaining the ability to be injected in a minimally invasive manner in vivo. Here, fibrin microbeads containing human umbilical vein endothelial cells (HUVEC) and bone marrow-derived mesenchymal stromal cells (MSC) were cultured in suspension for 3 days (D3 PC microbeads) before being implanted within intramuscular pockets in a SCID mouse model of hindlimb ischemia. By 14 days post-surgery, animals treated with D3 PC microbeads showed increased macroscopic reperfusion of ischemic foot pads and improved limb salvage compared to the cellular controls. Delivery of HUVEC and MSC via microbeads led to the formation of extensive microvascular networks throughout the implants. Engineered vessels of human origins showed evidence of inosculation with host vasculature, as indicated by erythrocytes present in hCD31+ vessels. Over time, the total number of human-derived vessels within the implant region decreased as networks remodeled and an increase in mature, pericyte-supported vascular structures was observed. Our findings highlight the potential therapeutic benefit of developing modular, prevascularized microbeads as a minimally invasive therapeutic for treating ischemic tissues.


Subject(s)
Fibrin , Neovascularization, Physiologic , Animals , Mice , Humans , Cells, Cultured , Fibrin/pharmacology , Fibrin/chemistry , Microspheres , Mice, SCID , Human Umbilical Vein Endothelial Cells , Tissue Engineering , Neovascularization, Pathologic , Ischemia/therapy
2.
Kidney Int ; 105(2): 312-327, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37977366

ABSTRACT

Acute kidney injury (AKI) is a common condition that lacks effective treatments. In part, this shortcoming is due to an incomplete understanding of the genetic mechanisms that control pathogenesis and recovery. Identifying the molecular and genetic regulators unique to nephron segments that dictate vulnerability to injury and regenerative potential could lead to new therapeutic targets to treat ischemic kidney injury. Pax2 and Pax8 are homologous transcription factors with overlapping functions that are critical for kidney development and are re-activated in AKI. Here, we examined the role of Pax2 and Pax8 in recovery from ischemic AKI and found them upregulated after severe AKI and correlated with chronic injury. Surprisingly, proximal-tubule-selective deletion of Pax2 and Pax8 resulted in a less severe chronic injury phenotype. This effect was mediated by protection against the acute insult, similar to pre-conditioning. Prior to injury, Pax2 and Pax8 mutant mice develop a unique subpopulation of proximal tubule cells in the S3 segment that displayed features usually seen only in acute or chronic injury. The expression signature of these cells was strongly enriched with genes associated with other mechanisms of protection against ischemic AKI including caloric restriction, hypoxic pre-conditioning, and female sex. Thus, our results identified a novel role for Pax2 and Pax8 in mature proximal tubules that regulates critical genes and pathways involved in both the injury response and protection from ischemic AKI.


Subject(s)
Acute Kidney Injury , Kidney Tubules, Proximal , PAX2 Transcription Factor , PAX8 Transcription Factor , Renal Insufficiency, Chronic , Animals , Female , Mice , Acute Kidney Injury/complications , Acute Kidney Injury/genetics , Ischemia/complications , Kidney Tubules, Proximal/pathology , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/genetics , Reperfusion Injury/genetics , PAX8 Transcription Factor/genetics , PAX8 Transcription Factor/metabolism , PAX2 Transcription Factor/genetics , PAX2 Transcription Factor/metabolism
3.
Am J Physiol Renal Physiol ; 326(2): F178-F188, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37994409

ABSTRACT

Chronic kidney disease is increasing at an alarming rate and correlates with the increase in diabetes, obesity, and hypertension that disproportionately impact socioeconomically disadvantaged communities. Iron plays essential roles in many biological processes including oxygen transport, mitochondrial function, cell proliferation, and regeneration. However, excess iron induces the generation and propagation of reactive oxygen species, which lead to oxidative stress, cellular damage, and ferroptosis. Iron homeostasis is regulated in part by the kidney through iron resorption from the glomerular filtrate and exports into the plasma by ferroportin (FPN). Yet, the impact of iron overload in the kidney has not been addressed. To test more directly whether excess iron accumulation is toxic to kidneys, we generated a kidney proximal tubule-specific knockout of FPN. Despite significant intracellular iron accumulation in FPN mutant tubules, basal kidney function was not measurably different from wild type kidneys. However, upon induction of acute kidney injury (AKI), FPN mutant kidneys exhibited significantly more damage and failed recovery, evidence for ferroptosis, and increased fibrosis. Thus, disruption of iron export in proximal tubules, leading to iron overload, can significantly impair recovery from AKI and can contribute to progressive renal damage indicative of chronic kidney disease. Understanding the mechanisms that regulate iron homeostasis in the kidney may provide new therapeutic strategies for progressive kidney disease and other ferroptosis-associated disorders.NEW & NOTEWORTHY Physiological iron homeostasis depends in part on renal resorption and export into the plasma. We show that specific deletion of iron exporters in the proximal tubules sensitizes cells to injury and inhibits recovery. This can promote a chronic kidney disease phenotype. Our paper demonstrates the need for iron balance in the proximal tubules to maintain and promote healthy recovery after acute kidney injury.


Subject(s)
Acute Kidney Injury , Cation Transport Proteins , Iron Overload , Renal Insufficiency, Chronic , Humans , Kidney/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Iron/metabolism , Iron Overload/metabolism , Homeostasis/physiology , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism
4.
bioRxiv ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37873377

ABSTRACT

Acute kidney injury (AKI) is a common condition that lacks effective treatments. In part this shortcoming is due to an incomplete understanding of the genetic mechanisms that control pathogenesis and recovery. Pax2 and Pax8 are homologous transcription factors with overlapping functions that are critical for kidney development and are re-activated in AKI. In this report, we examined the role of Pax2 and Pax8 in recovery from ischemic AKI. We found that Pax2 and Pax8 are upregulated after severe AKI and correlate with chronic injury. Surprisingly, we then discovered that proximal-tubule-selective deletion of Pax2 and Pax8 resulted in a less severe chronic injury phenotype. This effect was mediated by protection against the acute insult, similar to preconditioning. Prior to injury, Pax2 and Pax8 mutant mice develop a unique subpopulation of S3 proximal tubule cells that display features usually seen only in acute or chronic injury. The expression signature of these cells was strongly enriched with genes associated with other mechanisms of protection against ischemic AKI including caloric restriction, hypoxic preconditioning, and female sex. Taken together, our results identify a novel role for Pax2 and Pax8 in mature proximal tubules that regulates critical genes and pathways involved in both injury response and protection from ischemic AKI. TRANSLATIONAL STATEMENT: Identifying the molecular and genetic regulators unique to the nephron that dictate vulnerability to injury and regenerative potential could lead to new therapeutic targets to treat ischemic kidney injury. Pax2 and Pax8 are two homologous nephron-specific transcription factors that are critical for kidney development and physiology. Here we report that proximal-tubule-selective depletion of Pax2 and Pax8 protects against both acute and chronic injury and induces an expression profile in the S3 proximal tubule with common features shared among diverse conditions that protect against ischemia. These findings highlight a new role for Pax proteins as potential therapeutic targets to treat AKI.

5.
Sci Rep ; 13(1): 6361, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37076596

ABSTRACT

Recovery from acute kidney injury can vary widely in patients and in animal models. Immunofluorescence staining can provide spatial information about heterogeneous injury responses, but often only a fraction of stained tissue is analyzed. Deep learning can expand analysis to larger areas and sample numbers by substituting for time-intensive manual or semi-automated quantification techniques. Here we report one approach to leverage deep learning tools to quantify heterogenous responses to kidney injury that can be deployed without specialized equipment or programming expertise. We first demonstrated that deep learning models generated from small training sets accurately identified a range of stains and structures with performance similar to that of trained human observers. We then showed this approach accurately tracks the evolution of folic acid induced kidney injury in mice and highlights spatially clustered tubules that fail to repair. We then demonstrated that this approach captures the variation in recovery across a robust sample of kidneys after ischemic injury. Finally, we showed markers of failed repair after ischemic injury were correlated both spatially within and between animals and that failed repair was inversely correlated with peritubular capillary density. Combined, we demonstrate the utility and versatility of our approach to capture spatially heterogenous responses to kidney injury.


Subject(s)
Acute Kidney Injury , Deep Learning , Humans , Mice , Animals , Kidney/blood supply , Models, Animal , Folic Acid
6.
Lab Chip ; 21(6): 1150-1163, 2021 03 21.
Article in English | MEDLINE | ID: mdl-33538719

ABSTRACT

Supportive stromal cells of mesenchymal origins regulate vascular morphogenesis in developmental, pathological, and regenerative contexts, contributing to vessel formation, maturation, and long-term stability, in part via the secretion of bioactive molecules. In this work, we adapted a microfluidic lab-on-a-chip system that enables the formation and perfusion of microvascular capillary beds with connections to arteriole-scale endothelialized channels to explore how stromal cell (SC) identity influences endothelial cell (EC) morphogenesis. We compared and contrasted lung fibroblasts (LFs), dermal fibroblasts (DFs), and bone marrow-derived mesenchymal stem cells (MSCs) for their abilities to support endothelial morphogenesis and subsequent perfusion of microvascular networks formed in fibrin hydrogels within the microfluidic device. We demonstrated that while all 3 SC types supported EC morphogenesis, LFs in particular resulted in microvascular morphologies with the highest total network length, vessel diameter, and vessel interconnectivity across a range of SC-EC ratio and density conditions. Not only did LFs support robust vascular morphology, but also, they were the only SC type to support functional perfusion of the resultant capillary beds. Lastly, we identified heightened traction stress produced by LFs as a possible mechanism by which LFs enhance endothelial morphogenesis in 3D compared to other SC types examined. This study provides a unique comparison of three different SC types and their role in supporting the formation of microvasculature that could provide insights for the choice of cells for vascular cell-based therapies and the regulation of tissue-specific vasculature.


Subject(s)
Lab-On-A-Chip Devices , Microvessels , Cell Differentiation , Morphogenesis , Neovascularization, Physiologic , Stromal Cells
7.
Sci Rep ; 10(1): 15562, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968145

ABSTRACT

Revascularization of ischemic tissues is a major barrier to restoring tissue function in many pathologies. Delivery of pro-angiogenic factors has shown some benefit, but it is difficult to recapitulate the complex set of factors required to form stable vasculature. Cell-based therapies and pre-vascularized tissues have shown promise, but the former require time for vascular assembly in situ while the latter require invasive surgery to implant vascularized scaffolds. Here, we developed cell-laden fibrin microbeads that can be pre-cultured to form primitive vascular networks within the modular structures. These microbeads can be delivered in a minimally invasive manner and form functional microvasculature in vivo. Microbeads containing endothelial cells and stromal fibroblasts were pre-cultured for 3 days in vitro and then injected within a fibrin matrix into subcutaneous pockets on the dorsal flanks of SCID mice. Vessels deployed from these pre-cultured microbeads formed functional connections to host vasculature within 3 days and exhibited extensive, mature vessel coverage after 7 days in vivo. Cellular microbeads showed vascularization potential comparable to bulk cellular hydrogels in this pilot study. Furthermore, our findings highlight some potentially advantageous characteristics of pre-cultured microbeads, such as volume preservation and vascular network distribution, which may be beneficial for treating ischemic diseases.


Subject(s)
Fibrin/pharmacology , Hydrogels/pharmacology , Neovascularization, Physiologic , Tissue Engineering , Animals , Cells, Cultured , Fibrin/chemistry , Fibroblasts/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Hydrogels/chemistry , Mice , Microspheres , Microvessels/drug effects , Microvessels/growth & development , Tissue Scaffolds/chemistry
8.
Biomaterials ; 230: 119634, 2020 02.
Article in English | MEDLINE | ID: mdl-31776019

ABSTRACT

There is a critical need for biomaterials that support robust neovascularization for a wide-range of clinical applications. Here we report how cells alter tissue-level mechanical properties during capillary morphogenesis using a model of endothelial-stromal cell co-culture within poly(ethylene glycol) (PEG) based hydrogels. After a week of culture, we observed substantial stiffening in hydrogels with very soft initial properties. Endothelial cells or stromal cells alone, however, failed to induce hydrogel stiffening. This stiffening tightly correlated with degree of vessel formation but not with hydrogel compaction or cellular proliferation. Despite a lack of fibrillar architecture within the PEG hydrogels, cell-generated contractile forces were essential for hydrogel stiffening. Upregulation of alpha smooth muscle actin and collagen-1 was also correlated with enhanced vessel formation and hydrogel stiffening. Blocking cell-mediated hydrogel degradation abolished stiffening, demonstrating that matrix metalloproteinase (MMP)-mediated remodeling is required for stiffening to occur. These results highlight the dynamic reciprocity between cells and their mechanical microenvironment during capillary morphogenesis and provide important insights for the rational design of materials for vasculogenic applications.


Subject(s)
Endothelial Cells , Hydrogels , Biocompatible Materials , Morphogenesis , Polyethylene Glycols
9.
J Biomed Mater Res B Appl Biomater ; 107(8): 2507-2516, 2019 11.
Article in English | MEDLINE | ID: mdl-30784190

ABSTRACT

Extracellular matrix (ECM) remodeling is essential for the process of capillary morphogenesis. Here we employed synthetic poly(ethylene glycol) (PEG) hydrogels engineered with proteolytic specificity to either matrix metalloproteinases (MMPs), plasmin, or both to investigate the relative contributions of MMP- and plasmin-mediated ECM remodeling to vessel formation in a 3D-model of capillary self-assembly analogous to vasculogenesis. We first demonstrated a role for both MMP- and plasmin-mediated mechanisms of ECM remodeling in an endothelial-fibroblast co-culture model of vasculogenesis in fibrin hydrogels using inhibitors of MMPs and plasmin. When this co-culture model was employed in engineered PEG hydrogels with selective protease sensitivity, we observed robust capillary morphogenesis only in MMP-sensitive matrices. Fibroblast spreading in plasmin-selective hydrogels confirmed this difference was due to protease preference by endothelial cells, not due to limitations of the matrix itself. In hydrogels engineered with crosslinks that were dually susceptible to MMPs and plasmin, capillary morphogenesis was unchanged. These findings highlight the critical importance of MMP-mediated degradation during vasculogenesis and provide strong evidence to justify the preferential selection of MMP-degradable peptide crosslinkers in synthetic hydrogels used to study vascular morphogenesis and promote vascularization. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2507-2516, 2019.


Subject(s)
Capillaries/growth & development , Collagenases/metabolism , Extracellular Matrix/metabolism , Fibrinolysin/metabolism , Fibroblasts/enzymology , Human Umbilical Vein Endothelial Cells/enzymology , Hydrogels/chemistry , Neovascularization, Physiologic , Capillaries/enzymology , Coculture Techniques , Humans
10.
PLoS One ; 12(7): e0181085, 2017.
Article in English | MEDLINE | ID: mdl-28715434

ABSTRACT

Acute kidney injury (AKI) is common and associated with significant morbidity and mortality. Recovery from many forms of AKI involves the proliferation of renal proximal tubular epithelial cells (RPTECs), but the influence of the microenvironment in which this recovery occurs remains poorly understood. Here we report the development of a poly(ethylene glycol) (PEG) hydrogel platform to study the influence of substrate mechanical properties on the proliferation of human RPTECs as a model for recovery from AKI. PEG diacrylate based hydrogels were generated with orthogonal control of mechanics and cell-substrate interactions. Using this platform, we found that increased substrate stiffness promotes RPTEC spreading and proliferation. RPTECs showed similar degrees of apoptosis and Yes-associated protein (YAP) nuclear localization regardless of stiffness, suggesting these were not key mediators of the effect. However, focal adhesion formation, cytoskeletal organization, focal adhesion kinase (FAK) activation, and extracellular signal-regulated kinase (ERK) activation were all enhanced with increasing substrate stiffness. Inhibition of ERK activation substantially attenuated the effect of stiffness on proliferation. In long-term culture, hydrogel stiffness promoted the formation of more complete epithelial monolayers with tight junctions, cell polarity, and an organized basement membrane. These data suggest that increased stiffness potentially may have beneficial consequences for the renal tubular epithelium during recovery from AKI.


Subject(s)
Cell Proliferation/drug effects , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Stress, Mechanical , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis/drug effects , Cell Nucleus/metabolism , Cell Polarity , Cells, Cultured , Collagen Type IV/chemistry , Collagen Type IV/metabolism , Cytoskeleton/drug effects , Epithelial Cells/cytology , Epithelial Cells/metabolism , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/metabolism , Flavonoids/pharmacology , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesions/drug effects , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Kidney Tubules, Proximal/cytology , Microscopy, Fluorescence , Phosphoproteins/metabolism , Phosphorylation , Tight Junctions , Transcription Factors , Vinculin/metabolism , YAP-Signaling Proteins
11.
Tissue Eng Part B Rev ; 16(5): 467-91, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20334504

ABSTRACT

The molecular regulation of smooth muscle cell (SMC) behavior is reviewed, with particular emphasis on stimuli that promote the contractile phenotype. SMCs can shift reversibly along a continuum from a quiescent, contractile phenotype to a synthetic phenotype, which is characterized by proliferation and extracellular matrix (ECM) synthesis. This phenotypic plasticity can be harnessed for tissue engineering. Cultured synthetic SMCs have been used to engineer smooth muscle tissues with organized ECM and cell populations. However, returning SMCs to a contractile phenotype remains a key challenge. This review will integrate recent work on how soluble signaling factors, ECM, mechanical stimulation, and other cells contribute to the regulation of contractile SMC phenotype. The signal transduction pathways and mechanisms of gene expression induced by these stimuli are beginning to be elucidated and provide useful information for the quantitative analysis of SMC phenotype in engineered tissues. Progress in the development of tissue-engineered scaffold systems that implement biochemical, mechanical, or novel polymer fabrication approaches to promote contractile phenotype will also be reviewed. The application of an improved molecular understanding of SMC biology will facilitate the design of more potent cell-instructive scaffold systems to regulate SMC behavior.


Subject(s)
Blood Vessels/physiology , Muscle Contraction/physiology , Muscle, Smooth/metabolism , Tissue Engineering , Animals , Humans , Muscle, Smooth/cytology , Phenotype , Signal Transduction
12.
J Biomed Mater Res A ; 92(2): 441-50, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19191313

ABSTRACT

This study investigated the effects of poly(ethylene glycol) monoacrylate (PEGMA) on the properties of poly(ethylene glycol) diacrylate (PEGDA)-co-PEGMA hydrogel networks. The PEGMA materials utilized were similar to ligand-linked materials typically copolymerized with PEGDA for use as tissue engineering scaffolds. PEGDA (5-20% wt/wt, 6 kDa) and PEGMA (0-20% wt/wt, 0-43 mM, 5 kDa) were copolymerized by photo-initiated free radical polymerization and the mass swelling ratio and shear modulus of the resulting hydrogels were determined. Increasing the prepolymerization concentration of PEGMA decreased the swelling ratio by up to 42 +/- 1.6% and increased the shear modulus by up to 167 +/- 29.3%, suggesting that PEGMA enhanced gel cross-linking. Analysis of the effective number of cross-linked chains per PEGDA, calculated independently from swelling and mechanical data, indicated each PEGDA participated in more cross-links as PEGMA was added. The results suggest that PEGMA-co-PEGDA gels can be formed with higher concentrations of PEGMA-tethered ligands than previously reported allowing the formation of scaffolds with a rich diversity of biological functionalities without sacrificing the integrity of the gel network.


Subject(s)
Biocompatible Materials/chemistry , Hydrogels/chemistry , Methacrylates/chemistry , Polyethylene Glycols/chemistry , Algorithms , Biocompatible Materials/chemical synthesis , Chromatography, Gel , Hydrogels/chemical synthesis , Hydrogen-Ion Concentration , Methacrylates/chemical synthesis , Polyethylene Glycols/chemical synthesis , Rheology , Tissue Engineering
13.
Biomaterials ; 30(31): 6286-94, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19709740

ABSTRACT

Poly(ethylene glycol) diacrylate (PEGDA) hydrogel scaffolds were engineered to promote contractile smooth muscle cell (SMC) phenotype via controlled release of heparin. The scaffold design was evaluated by quantifying the effects of free heparin on SMC phenotype, engineering hydrogels to provide controlled release of heparin, and synthesizing cell-adhesive, heparin releasing hydrogels to promote contractile SMC phenotype. Heparin inhibited SMC proliferation and up-regulated expression of contractile SMC phenotype markers, including smooth muscle alpha-actin, calponin, and SM-22alpha, in a dose-dependent fashion (6 microg/ml to 3.2mg/ml). Heparin release from PEGDA hydrogels was controlled by altering PEGDA molecular weight (MW 1000-6000) and concentration at polymerization (10-30% w/w), yielding release profiles ranging from hours to weeks in duration. Heparin released from PEGDA gels, formulated for optimized heparin loading and release kinetics (30% w/w PEGDA, MW 3000), stimulated SMCs to up-regulate contractile marker mRNA. A cell-instructive scaffold construct was prepared by polymerizing a thin hydrogel film, with pendant RGD peptides for cell attachment, over the optimized hydrogel depots. SMCs seeded on these constructs had elevated levels of contractile marker mRNA after 3 d of culture compared with SMCs on control constructs. These results indicate that RGD-modified, heparin releasing PEGDA gels can act as cell-instructive scaffolds that promote contractile SMC phenotype.


Subject(s)
Biocompatible Materials/chemistry , Heparin/pharmacology , Hydrogels/chemistry , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Tissue Engineering/methods , Blotting, Western , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Heparin/chemistry , Humans , Reverse Transcriptase Polymerase Chain Reaction , Tissue Scaffolds/chemistry
14.
Biomaterials ; 30(25): 4127-35, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19481795

ABSTRACT

This study reports on the ability of poly(ethylene glycol) diacrylate (PEGDA) hydrogel scaffolds with pendant integrin-binding GRGDSP peptides (RGD-gels) to support the re-differentiation of cultured vascular smooth muscle cells (SMCs) toward a contractile phenotype. Human coronary artery SMCs were seeded on RGD-gels, hydrogels with other extracellular matrix derived peptides, fibronectin (FN) and laminin (LN). Differentiation was induced on RGD-gels with low serum medium containing soluble heparin, and the differentiation status was monitored by mRNA expression, protein expression, and intracellular protein organization of the contractile smooth muscle markers, smooth muscle alpha-actin, calponin, and SM-22alpha. RGD-gels supported a rapid induction (2.7- to 25-fold up-regulation) of SMC marker gene mRNA, with expression levels that were equivalent to FN and LN controls. Marker protein levels mirrored the changes in mRNA expression, with levels on RGD-gels indistinguishable from FN and LN controls. Furthermore, these markers co-localized in stress fibers within SMCs on RGD-gels suggesting the recapitulation of a contractile apparatus within the cells. These results indicate that SMCs cultured on RGD-bearing hydrogels can re-differentiate toward a contractile phenotype suggesting this material is an excellent candidate for further development as a bioactive scaffold that regulates SMC phenotype.


Subject(s)
Cell Differentiation/physiology , Hydrogels/chemistry , Muscle Contraction/physiology , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle , Oligopeptides/chemistry , Actins/metabolism , Animals , Biocompatible Materials/chemistry , Biomarkers/metabolism , Calcium-Binding Proteins/metabolism , Cell Shape , Cells, Cultured , Fibronectins/metabolism , Humans , Laminin/metabolism , Materials Testing , Microfilament Proteins/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/physiology , Phenotype , Polyethylene Glycols/chemistry , Calponins
15.
J Bacteriol ; 185(15): 4539-47, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12867463

ABSTRACT

The large-scale transcriptional program of two Clostridium acetobutylicum strains (SKO1 and M5) relative to that of the parent strain (wild type [WT]) was examined by using DNA microarrays. Glass DNA arrays containing a selected set of 1,019 genes (including all 178 pSOL1 genes) covering more than 25% of the whole genome were designed, constructed, and validated for data reliability. Strain SKO1, with an inactivated spo0A gene, displays an asporogenous, filamentous, and largely deficient solventogenic phenotype. SKO1 displays downregulation of all solvent formation genes, sigF, and carbohydrate metabolism genes (similar to genes expressed as part of the stationary-phase response in Bacillus subtilis) but also several electron transport genes. A major cluster of genes upregulated in SKO1 includes abrB, the genes from the major chemotaxis and motility operons, and glycosylation genes. Strain M5 displays an asporogenous and nonsolventogenic phenotype due to loss of the megaplasmid pSOL1, which contains all genes necessary for solvent formation. Therefore, M5 displays downregulation of all pSOL1 genes expressed in the WT. Notable among other genes expressed more highly in WT than in M5 were sigF, several two-component histidine kinases, spo0A, cheA, cheC, many stress response genes, fts family genes, DNA topoisomerase genes, and central-carbon metabolism genes. Genes expressed more highly in M5 include electron transport genes (but different from those downregulated in SKO1) and several motility and chemotaxis genes. Most of these expression patterns were consistent with phenotypic characteristics. Several of these expression patterns are new or different from what is known in B. subtilis and can be used to test a number of functional-genomic hypotheses.


Subject(s)
Bacterial Proteins/metabolism , Clostridium/growth & development , Gene Expression Regulation, Bacterial , Oligonucleotide Array Sequence Analysis , Solvents/metabolism , Transcription, Genetic , Bacterial Proteins/genetics , Blotting, Northern , Clostridium/classification , Clostridium/genetics , Clostridium/metabolism , Culture Media , Fermentation , Gene Expression Profiling , Reverse Transcriptase Polymerase Chain Reaction , Spores, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...