Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0302945, 2024.
Article in English | MEDLINE | ID: mdl-38776326

ABSTRACT

Understanding past coastal variability is valuable for contextualizing modern changes in coastal settings, yet existing Holocene paleoceanographic records for the North American Pacific Coast commonly originate from offshore marine sediments and may not represent the dynamic coastal environment. A potential archive of eastern Pacific Coast environmental variability is the intertidal mussel species Mytilus californianus. Archaeologists have collected copious stable isotopic (δ18O and δ13C) data from M. californianus shells to study human history at California's Channel Islands. When analyzed together, these isotopic data provide windows into 9000 years of Holocene isotopic variability and M. californianus life history. Here we synthesize over 6000 δ18O and δ13C data points from 13 published studies to investigate M. californianus shell isotopic variability across ontogenetic, geographic, seasonal, and millennial scales. Our analyses show that M. californianus may grow and record environmental information more irregularly than expected due to the competing influences of calcification, ontogeny, metabolism, and habitat. Stable isotope profiles with five or more subsamples per shell recorded environmental information ranging from seasonal to millennial scales, depending on the number of shells analyzed and the resolution of isotopic subsampling. Individual shell profiles contained seasonal cycles and an accurate inferred annual temperature range of ~ 5°C, although ontogenetic growth reduction obscured seasonal signals as organisms aged. Collectively, the mussel shell record reflected millennial-scale climate variability and an overall 0.52‰ depletion in δ18Oshell from 8800 BP to the present. The archive also revealed local-scale oceanographic variability in the form of a warmer coastal mainland δ18Oshell signal (-0.32‰) compared to a cooler offshore islands δ18Oshell signal (0.33‰). While M. californianus is a promising coastal archive, we emphasize the need for high-resolution subsampling from multiple individuals to disentangle impacts of calcification, metabolism, ontogeny, and habitat and more accurately infer environmental and biological patterns recorded by an intertidal species.


Subject(s)
Carbon Isotopes , Mytilus , Oxygen Isotopes , Seasons , Animals , Mytilus/metabolism , Mytilus/growth & development , Oxygen Isotopes/analysis , Carbon Isotopes/analysis , Climate , Life History Traits , Ecosystem , California , Animal Shells/chemistry , Animal Shells/growth & development , Animal Shells/metabolism
2.
J Exp Biol ; 220(Pt 23): 4399-4409, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28939560

ABSTRACT

Phenotypic plasticity has the potential to allow organisms to respond rapidly to global environmental change, but the range and effectiveness of these responses are poorly understood across taxa and growth strategies. Colonial organisms might be particularly resilient to environmental stressors, as organizational modularity and successive asexual generations can allow for distinctively flexible responses in the aggregate form. We performed laboratory experiments to examine the effects of increasing dissolved carbon dioxide (CO2) (i.e. ocean acidification) on the colonial bryozoan Celleporella cornuta sampled from two source populations within a coastal upwelling region of the northern California coast. Bryozoan colonies were remarkably plastic under these CO2 treatments. Colonies raised under high CO2 grew more quickly, investing less in reproduction and producing lighter skeletons when compared with genetically identical clones raised under current surface atmosphere CO2 values. Bryozoans held under high CO2 conditions also changed the Mg/Ca ratio of skeletal calcite and increased the expression of organic coverings in new growth, which may serve as protection against acidified water. We also observed strong differences between source populations in reproductive investment and organic covering reaction norms, consistent with adaptive responses to persistent spatial variation in local oceanographic conditions. Our results demonstrate that phenotypic plasticity and energetic trade-offs can mediate biological responses to global environmental change, and highlight the broad range of strategies available to colonial organisms.


Subject(s)
Bryozoa/physiology , Calcification, Physiologic , Carbon Dioxide/adverse effects , Carbonates/adverse effects , Seawater/chemistry , Animals , California , Climate Change
3.
Proc Biol Sci ; 284(1853)2017 Apr 26.
Article in English | MEDLINE | ID: mdl-28424343

ABSTRACT

Marine invertebrates with skeletons made of high-magnesium calcite may be especially susceptible to ocean acidification (OA) due to the elevated solubility of this form of calcium carbonate. However, skeletal composition can vary plastically within some species, and it is largely unknown how concurrent changes in multiple oceanographic parameters will interact to affect skeletal mineralogy, growth and vulnerability to future OA. We explored these interactive effects by culturing genetic clones of the bryozoan Jellyella tuberculata (formerly Membranipora tuberculata) under factorial combinations of dissolved carbon dioxide (CO2), temperature and food concentrations. High CO2 and cold temperature induced degeneration of zooids in colonies. However, colonies still maintained high growth efficiencies under these adverse conditions, indicating a compensatory trade-off whereby colonies degenerate more zooids under stress, redirecting energy to the growth and maintenance of new zooids. Low-food concentration and elevated temperatures also had interactive effects on skeletal mineralogy, resulting in skeletal calcite with higher concentrations of magnesium, which readily dissolved under high CO2 For taxa that weakly regulate skeletal magnesium concentration, skeletal dissolution may be a more widespread phenomenon than is currently documented and is a growing concern as oceans continue to warm and acidify.


Subject(s)
Bryozoa/physiology , Seawater/chemistry , Animals , Bryozoa/chemistry , Bryozoa/growth & development , Calcium Carbonate , California , Carbon Dioxide , Food , Magnesium/analysis , Magnesium/metabolism , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL
...